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Motivation

The additive group Z of integers has two very important properties:

1 Z is orderable; n < m ⇐⇒ n + k < m + k ,
2 the order intervals [0,n] form a Følner sequence.

These two properties imply (in ergodic theory) that:

hµ(T ,P) = H(P|P−),

where P− =
∨∞

i=1 T i(P) is the past of the process generated by P.
The Pinsker sigma-algebra of this process is characterized by the
formula

ΠP =
⋂
n≥1

P(−∞,−n] =
⋂
n≥1

P [n,∞),

where P(−∞,−n] =
∨∞

i=n T i(P) is called the nth remote past of the
process (analogously, P [n,∞) in the nth remote future).
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Motivation

In topological dynamics, orderability of Z allows to define asymptotic
pairs and using the variational principle and the above formula for the
Pinsker factor one can prove that:

1 Positive entropy of a system implies that it contains an
(off-diagonal) asymptotic pair. (Blanchard–Host–Ruette, 2002)

2 Every zero entropy system has an extension which has no
asymptotic pairs (NAP-system). (D.–Lacroix, 2012)

This provides a characterization of zero entropy systems in terms of
asymptotic pairs: these are exactly factors of NAP-systems.
The story goes on: one can prove that positive entropy implies
Li–Yorke chaos (Blanchard–Glasner–Kolyada–Maass, 2002) and even
mean Li–Yorke chaos (also known as distributional chaos DC2). (D.,
2011)
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Motivation

Some of the results mentioned above apply to actions of countable
amenable groups G which are orderable.

What can be done without orderability?

We are looking for a substitute of an invariant order, which allows to
calculate the entropy of a process,
find an effective formula for the Pinsker factor,
in topological dynamics, define asymptotic pairs, capable of
distinguishing between zero and positive entropy systems.

Ideally, we would like to mimic the two key properties of the order of Z:
1 some kind of invariance: g1 < g2 ⇐⇒ g1g < g2g,
2 the order intervals [g1,g2] (where g1 < g2) should be finite and

form a Følner sequence.
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The concept of a multiorder

Our invention has the form of a family of orders of type Z (bijections
Z→ G) on which G has a natural action and which carries an invariant
measure of entropy zero.

We call this object multiorder.
There already exists a similar notion, called invariant random order.
See: [AMR]: Andrei Alpeev, Tom Meyerovitch and Sieye Ryu,
Predictability, topological entropy and invariant random orders, ArXiv
2019,
but the idea goes probably back to J. Kieffer (1975).
An invariant random order is a family of total orders ≺ on G, on which
G acts as follows: a g(≺) b ⇐⇒ ag ≺ bg, together with an invariant
measure ν on these orders.
There is no requirement that the orders are of type Z or that the order
intervals form a Følner sequence.

Tomasz Downarowicz (Wrocław) Multiorder April 21, 2020 6 / 19



The concept of a multiorder

Our invention has the form of a family of orders of type Z (bijections
Z→ G) on which G has a natural action and which carries an invariant
measure of entropy zero.
We call this object multiorder.

There already exists a similar notion, called invariant random order.
See: [AMR]: Andrei Alpeev, Tom Meyerovitch and Sieye Ryu,
Predictability, topological entropy and invariant random orders, ArXiv
2019,
but the idea goes probably back to J. Kieffer (1975).
An invariant random order is a family of total orders ≺ on G, on which
G acts as follows: a g(≺) b ⇐⇒ ag ≺ bg, together with an invariant
measure ν on these orders.
There is no requirement that the orders are of type Z or that the order
intervals form a Følner sequence.

Tomasz Downarowicz (Wrocław) Multiorder April 21, 2020 6 / 19



The concept of a multiorder

Our invention has the form of a family of orders of type Z (bijections
Z→ G) on which G has a natural action and which carries an invariant
measure of entropy zero.
We call this object multiorder.
There already exists a similar notion, called invariant random order.

See: [AMR]: Andrei Alpeev, Tom Meyerovitch and Sieye Ryu,
Predictability, topological entropy and invariant random orders, ArXiv
2019,
but the idea goes probably back to J. Kieffer (1975).
An invariant random order is a family of total orders ≺ on G, on which
G acts as follows: a g(≺) b ⇐⇒ ag ≺ bg, together with an invariant
measure ν on these orders.
There is no requirement that the orders are of type Z or that the order
intervals form a Følner sequence.

Tomasz Downarowicz (Wrocław) Multiorder April 21, 2020 6 / 19



The concept of a multiorder

Our invention has the form of a family of orders of type Z (bijections
Z→ G) on which G has a natural action and which carries an invariant
measure of entropy zero.
We call this object multiorder.
There already exists a similar notion, called invariant random order.
See: [AMR]: Andrei Alpeev, Tom Meyerovitch and Sieye Ryu,
Predictability, topological entropy and invariant random orders, ArXiv
2019,

but the idea goes probably back to J. Kieffer (1975).
An invariant random order is a family of total orders ≺ on G, on which
G acts as follows: a g(≺) b ⇐⇒ ag ≺ bg, together with an invariant
measure ν on these orders.
There is no requirement that the orders are of type Z or that the order
intervals form a Følner sequence.

Tomasz Downarowicz (Wrocław) Multiorder April 21, 2020 6 / 19



The concept of a multiorder

Our invention has the form of a family of orders of type Z (bijections
Z→ G) on which G has a natural action and which carries an invariant
measure of entropy zero.
We call this object multiorder.
There already exists a similar notion, called invariant random order.
See: [AMR]: Andrei Alpeev, Tom Meyerovitch and Sieye Ryu,
Predictability, topological entropy and invariant random orders, ArXiv
2019,
but the idea goes probably back to J. Kieffer (1975).

An invariant random order is a family of total orders ≺ on G, on which
G acts as follows: a g(≺) b ⇐⇒ ag ≺ bg, together with an invariant
measure ν on these orders.
There is no requirement that the orders are of type Z or that the order
intervals form a Følner sequence.

Tomasz Downarowicz (Wrocław) Multiorder April 21, 2020 6 / 19



The concept of a multiorder

Our invention has the form of a family of orders of type Z (bijections
Z→ G) on which G has a natural action and which carries an invariant
measure of entropy zero.
We call this object multiorder.
There already exists a similar notion, called invariant random order.
See: [AMR]: Andrei Alpeev, Tom Meyerovitch and Sieye Ryu,
Predictability, topological entropy and invariant random orders, ArXiv
2019,
but the idea goes probably back to J. Kieffer (1975).
An invariant random order is a family of total orders ≺ on G, on which
G acts as follows: a g(≺) b ⇐⇒ ag ≺ bg, together with an invariant
measure ν on these orders.

There is no requirement that the orders are of type Z or that the order
intervals form a Følner sequence.

Tomasz Downarowicz (Wrocław) Multiorder April 21, 2020 6 / 19



The concept of a multiorder

Our invention has the form of a family of orders of type Z (bijections
Z→ G) on which G has a natural action and which carries an invariant
measure of entropy zero.
We call this object multiorder.
There already exists a similar notion, called invariant random order.
See: [AMR]: Andrei Alpeev, Tom Meyerovitch and Sieye Ryu,
Predictability, topological entropy and invariant random orders, ArXiv
2019,
but the idea goes probably back to J. Kieffer (1975).
An invariant random order is a family of total orders ≺ on G, on which
G acts as follows: a g(≺) b ⇐⇒ ag ≺ bg, together with an invariant
measure ν on these orders.
There is no requirement that the orders are of type Z or that the order
intervals form a Følner sequence.

Tomasz Downarowicz (Wrocław) Multiorder April 21, 2020 6 / 19



The concept of a multiorder

Definition 1
Let G be a countable set. A total order ≺ on G is of type Z if every
order interval [g1,g2]≺ = {g : g = g1 or g = g2 or g1 ≺ g ≺ g2} (where
g1 ≺ g2) is finite and there is no minimal and no maximal element of G.

In other words, (G,≺) is order-isomorphic to (Z, <).
By OG we denote the family of all orders of G of type Z.

It can be verified that OG is a Polish space (but not compact).

Definition 2
Let G be a countable group. The group acts by homeomorphisms on
OG as follows:

a g(≺) b ⇐⇒ ag ≺ bg, (0.1)
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The concept of a multiorder
Definition 3
Let G be a countable group. By a multiorder we will understand any
Borel-measurable G-invariant subset Õ of OG which supports an
invariant measure ν.

Definition 4
Let G be a countable amenable group. A multiorder Õ is uniformly
Følner if for any finite set K ⊂ G and any ε > 0 there exists n such that
for any ≺ ∈ Õ, any order interval [a,b]≺ of length at least n is
(K , ε)-invariant.

Multioder can be viewed as a family of bijections bi : Z→ G such that
bi(0) = e. The action of G on such bijections is a bit more complicated:(

g(bi)
)
(n) = bi(n + k) · g−1, where k is such that g = bi(k). (0.2)
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The concept of a multiorder

Theorem 1
The assignment ≺ 7→ bi≺ is a topological conjugacy between the
action of G on OG given by (0.1) and the collection of all anchored
bijections from Z to G equipped with the action given by (0.2).

Proof. Continuity and injectivity are obvious.
It is also quite clear that any anchored bijection bi : Z→ G is
associated to some order ≺∈ OG.
By (0.2), we have (g(bi≺))(0) = bi≺(k) · g−1 = gg−1 = e, so g(bi≺) is
anchored.
To complete the proof we need to show that

(g(bi≺))(i) = big(≺)(i),

for all i ∈ Z.
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Proof. Continuity and injectivity are obvious.
It is also quite clear that any anchored bijection bi : Z→ G is
associated to some order ≺∈ OG.

By (0.2), we have (g(bi≺))(0) = bi≺(k) · g−1 = gg−1 = e, so g(bi≺) is
anchored.
To complete the proof we need to show that

(g(bi≺))(i) = big(≺)(i),

for all i ∈ Z.
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To show:
(g(bi≺))(i) = big(≺)(i).

For i = 0 this follows from both bi≺ and g(bi≺) being anchored.

Choose i>0 and let h = big(≺)(i) (we omit the similar case i<0).

Then [e,h]g(≺) in an order interval (with respect to g(≺)) of length
i + 1.

According to (0.1), [g,hg]≺ is an order interval of length i + 1 with
respect to ≺ .

This implies that if k is such that bi≺(k) = g, then hg = bi≺(i + k), i.e.
h = bi≺(i + k) · g−1.

By (0.2), the latter expression equals (g(bi≺))(i), and we are done.
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Notation
Consider a bijection bi : Z→ G such that bi(0) = e, and let ≺ ∈ OG be
the associated order of type Z on G. We will write:

n≺ = bi(n), (n ∈ Z) (attention (−n)≺ 6= (n≺)−1),

[m,n]≺, [n,∞)≺, (−∞,−n]≺ (m,n ∈ Z),

[a,b]≺, [a,∞)≺, (−∞,a]≺ (a,b ∈ G).

Mixed notation: [a,a + n]≺, [a− n,a]≺,
[F ,F + n]≺ =

⋃
g∈F [g,g + n]≺.

If G acts on a measurable space X and P is a partition of X then

PD =
∨

g∈D

g−1(P), for example P−≺ = P(−∞,−1]≺ =
∨

g≺(−1)≺
g−1(P)

(“random past”).
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Key theorem

Theorem 2
Let G be a countable amenable group. There exists a uniformly Følner
multiorder Õ which supports at least one invariant measure and all
invariant measures it supports have entropy zero.
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How useful are multiorders
First of all, they are ubiquitous:

Theorem 3 (project)

Let (X , µ,G) denote a free measure-theoretic action of a countable
amenable group G. Then there exists a uniformly Følner multiorder
(Õ, ν,G) which is a measure-theoretic factor of (X , µ,G).

Definition 5
By a multiordered dynamical system (X , µ,G, ϕ) we will mean (X , µ,G)
with a fixed factor map ϕ : X → Õ, where (Õ, ν,G) is a multiorder. By
{µ≺ : ≺ ∈ Õ} we will denote the disintegration of µ with respect to ν.

Theorem 4
Let (X , µ,G, ϕ) be a multiordered dynamical system. For any finite
partition P of X the following equality holds:

h(µ,P|Õ) =

∫
H(µ≺,P|P−≺ ) dν(≺) =

∫
H(µ≺,P|P+

≺ ) dν(≺).
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What is new
For an invariant random order we have a similar formula (see [AMR]):

h(µ,P) =

∫
H(µ,P|P−≺ ) dν(≺), (0.3)

which corresponds to ours

h(µ,P|Õ) =

∫
H(µ≺,P|P−≺ ) dν(≺) (0.4)

applied to the independent joining (product) of (X , µ,G) with (Õ, ν,G).

That is to say, invariant random order is external, while multiorder is
internal to the system (X , µ,G) (plus it is uniformly Følner).

This causes that the proof of Theorem 3 (formula (0.4)) is much longer
and more intricate than that of (0.3).
In particular, (0.4) seems to really need the uniform Følner property.
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That is to say, invariant random order is external, while multiorder is
internal to the system (X , µ,G) (plus it is uniformly Følner).

This causes that the proof of Theorem 3 (formula (0.4)) is much longer
and more intricate than that of (0.3).
In particular, (0.4) seems to really need the uniform Følner property.

Tomasz Downarowicz (Wrocław) Multiorder April 21, 2020 14 / 19



What is new
For an invariant random order we have a similar formula (see [AMR]):

h(µ,P) =

∫
H(µ,P|P−≺ ) dν(≺), (0.3)

which corresponds to ours

h(µ,P|Õ) =

∫
H(µ≺,P|P−≺ ) dν(≺) (0.4)

applied to the independent joining (product) of (X , µ,G) with (Õ, ν,G).
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That is to say, invariant random order is external, while multiorder is
internal to the system (X , µ,G) (plus it is uniformly Følner).

This causes that the proof of Theorem 3 (formula (0.4)) is much longer
and more intricate than that of (0.3).
In particular, (0.4) seems to really need the uniform Følner property.

Tomasz Downarowicz (Wrocław) Multiorder April 21, 2020 14 / 19



What we hope for
We hope to be able to prove the following:

Conjecture 1
Let (X , µ,G, ϕ) be a multiordered dynamical system. Assume that the
underlying multiorder (Õ, ν,G) has entropy zero (which is possible if
the Pinsker factor is free). Let P be a finite partition of X . Then the
Pinsker sigma-algebra ΠP of the process generated by P is
characterized by

A ∈ ΠP ⇐⇒ ∀≺∈Õ A ∩ ϕ−1(≺) ∈
⋂
n≥1

P(−∞,−n]≺ .

Compare it with the classical formula for Z-actions:

ΠP =
⋂
n≥1

P(−∞,−n].
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What we hope for

In topological dynamics, we hope to be able to prove:

Definition 6
A pair x1 6= x2 in a multiordered topological dynamical system (X ,G, ϕ)
(ϕ is defined on a full invariant measure set) is ϕ-asymptotic if
ϕ(x1)+ = ϕ(x2)+ = ≺+ and

lim
n→∞

dist
(
n≺(x1),n≺(x2)

)
= 0.

Conjecture 2
Let (Y ,G) be topological dynamical system. Then the system has
topological entropy zero if and only if it is a topological factor of a
multiordered system (X ,G, ϕ) with no ϕ-asymptotic pairs.
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Examples
Let G = Z. Let T be the dyadic odometer, i.e. each Tk divides Z into
intervals of length 2k .

Every shape S′ ∈ Sk+1 (interval of length 2k+1) splits into two subtiles
(intervals of length 2k ).
If enumerate them always from left to right, then the order ≺T

coincides with the standard order of Z, regardless of T .
But we can enumerate them from left to right for even k and from right
to left for odd k . Then we will get a family of weird orders (depending
on T ) as in the figure:

11 12 15 16 13 14 3 4 2 7 8 5 6 2719 10

Nonetheless, these orders allow to compute (in a nonstandard way)
the entropy and (hopefully) the Pinsker factor, for example in Toeplitz
systems.
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Examples
Let G = Z2. Let T have the following sets of shapes Sk : all of them are
squares 2k × 2k , but we distinguish four types, depending on the
ordering of subtiles:

tk+1 =

[
Ak @k
tk tk

] [
1 4
2 3

]
, @k+1 =

[
@k tk
@k uk

] [
3 4
2 1

]
,

Ak+1 =

[
tk Ak
uk Ak

] [
1 2
4 3

]
, uk+1 =

[
uk uk
Ak @k

] [
3 2
4 1

]
.

With this enumeration, for every
T ∈ T the ordering ≺T of Z2 fol-
lows the familiar pattern of the so-
called Hilbert space-filling curve, as
shown on the figure:
(There are uncountably many such
infinite curves, depending on T ).
These orders have the (rare) prop-
erty “successor is a neighbor”.
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THANK YOU!
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