Multiorder in countable amenable groups

Tomasz Downarowicz

Faculty of Pure and Applied Mathematics Wroclaw University of Science and Technology

Poland
based on a joint work with

Piotr Oprocha and Guohua Zhang

Motivation

The additive group \mathbb{Z} of integers has two very important properties:

Motivation

The additive group \mathbb{Z} of integers has two very important properties:
(1) \mathbb{Z} is orderable; $n<m \Longleftrightarrow n+k<m+k$,

Motivation

The additive group \mathbb{Z} of integers has two very important properties:
(1) \mathbb{Z} is orderable; $n<m \Longleftrightarrow n+k<m+k$,
(2) the order intervals $[0, n]$ form a Følner sequence.

Motivation

The additive group \mathbb{Z} of integers has two very important properties:
(1) \mathbb{Z} is orderable; $n<m \Longleftrightarrow n+k<m+k$,
(2) the order intervals $[0, n]$ form a Følner sequence.

These two properties imply (in ergodic theory) that:

$$
h_{\mu}(T, \mathcal{P})=H\left(\mathcal{P} \mid \mathcal{P}^{-}\right)
$$

where $\mathcal{P}^{-}=\bigvee_{i=1}^{\infty} T^{i}(\mathcal{P})$ is the past of the process generated by \mathcal{P}.

Motivation

The additive group \mathbb{Z} of integers has two very important properties:
(1) \mathbb{Z} is orderable; $n<m \Longleftrightarrow n+k<m+k$,
(2) the order intervals $[0, n]$ form a Følner sequence.

These two properties imply (in ergodic theory) that:

$$
h_{\mu}(T, \mathcal{P})=H\left(\mathcal{P} \mid \mathcal{P}^{-}\right)
$$

where $\mathcal{P}^{-}=\bigvee_{i=1}^{\infty} T^{i}(\mathcal{P})$ is the past of the process generated by \mathcal{P}. The Pinsker sigma-algebra of this process is characterized by the formula

$$
\Pi_{\mathcal{P}}=\bigcap_{n \geq 1} \mathcal{P}^{(-\infty,-n]}=\bigcap_{n \geq 1} \mathcal{P}^{[n, \infty)}
$$

Motivation

The additive group \mathbb{Z} of integers has two very important properties:
(1) \mathbb{Z} is orderable; $n<m \Longleftrightarrow n+k<m+k$,
(2) the order intervals $[0, n]$ form a Følner sequence.

These two properties imply (in ergodic theory) that:

$$
h_{\mu}(T, \mathcal{P})=H\left(\mathcal{P} \mid \mathcal{P}^{-}\right)
$$

where $\mathcal{P}^{-}=\bigvee_{i=1}^{\infty} T^{i}(\mathcal{P})$ is the past of the process generated by \mathcal{P}. The Pinsker sigma-algebra of this process is characterized by the formula

$$
\Pi_{\mathcal{P}}=\bigcap_{n \geq 1} \mathcal{P}^{(-\infty,-n]}=\bigcap_{n \geq 1} \mathcal{P}^{[n, \infty)}
$$

where $\mathcal{P}^{(-\infty,-n]}=\bigvee_{i=n}^{\infty} T^{i}(\mathcal{P})$ is called the nth remote past of the process (analogously, $\mathcal{P}^{[n, \infty)}$ in the nth remote future).

Motivation

In topological dynamics, orderability of \mathbb{Z} allows to define asymptotic pairs and using the variational principle and the above formula for the Pinsker factor one can prove that:

Motivation

In topological dynamics, orderability of \mathbb{Z} allows to define asymptotic pairs and using the variational principle and the above formula for the Pinsker factor one can prove that:
(1) Positive entropy of a system implies that it contains an (off-diagonal) asymptotic pair. (Blanchard-Host-Ruette, 2002)

Motivation

In topological dynamics, orderability of \mathbb{Z} allows to define asymptotic pairs and using the variational principle and the above formula for the Pinsker factor one can prove that:
(1) Positive entropy of a system implies that it contains an (off-diagonal) asymptotic pair. (Blanchard-Host-Ruette, 2002)
(2) Every zero entropy system has an extension which has no asymptotic pairs (NAP-system). (D.-Lacroix, 2012)

Motivation

In topological dynamics, orderability of \mathbb{Z} allows to define asymptotic pairs and using the variational principle and the above formula for the Pinsker factor one can prove that:
(1) Positive entropy of a system implies that it contains an (off-diagonal) asymptotic pair. (Blanchard-Host-Ruette, 2002)
(2) Every zero entropy system has an extension which has no asymptotic pairs (NAP-system). (D.-Lacroix, 2012)

This provides a characterization of zero entropy systems in terms of asymptotic pairs: these are exactly factors of NAP-systems.

Motivation

In topological dynamics, orderability of \mathbb{Z} allows to define asymptotic pairs and using the variational principle and the above formula for the Pinsker factor one can prove that:
(1) Positive entropy of a system implies that it contains an (off-diagonal) asymptotic pair. (Blanchard-Host-Ruette, 2002)
(3) Every zero entropy system has an extension which has no asymptotic pairs (NAP-system). (D.-Lacroix, 2012)

This provides a characterization of zero entropy systems in terms of asymptotic pairs: these are exactly factors of NAP-systems.
The story goes on: one can prove that positive entropy implies Li-Yorke chaos (Blanchard-Glasner-Kolyada-Maass, 2002) and even mean Li-Yorke chaos (also known as distributional chaos DC2). (D., 2011)

Motivation

Some of the results mentioned above apply to actions of countable amenable groups G which are orderable.

Motivation

Some of the results mentioned above apply to actions of countable amenable groups G which are orderable.
What can be done without orderability?

Motivation

Some of the results mentioned above apply to actions of countable amenable groups G which are orderable.

What can be done without orderability?
We are looking for a substitute of an invariant order, which allows to

- calculate the entropy of a process,
- find an effective formula for the Pinsker factor,
- in topological dynamics, define asymptotic pairs, capable of distinguishing between zero and positive entropy systems.

Motivation

Some of the results mentioned above apply to actions of countable amenable groups G which are orderable.
What can be done without orderability?
We are looking for a substitute of an invariant order, which allows to

- calculate the entropy of a process,
- find an effective formula for the Pinsker factor,
- in topological dynamics, define asymptotic pairs, capable of distinguishing between zero and positive entropy systems.

Ideally, we would like to mimic the two key properties of the order of \mathbb{Z} :

Motivation

Some of the results mentioned above apply to actions of countable amenable groups G which are orderable.
What can be done without orderability?
We are looking for a substitute of an invariant order, which allows to

- calculate the entropy of a process,
- find an effective formula for the Pinsker factor,
- in topological dynamics, define asymptotic pairs, capable of distinguishing between zero and positive entropy systems.

Ideally, we would like to mimic the two key properties of the order of \mathbb{Z} :
(1) some kind of invariance: $g_{1}<g_{2} \Longleftrightarrow g_{1} g<g_{2} g$,

Motivation

Some of the results mentioned above apply to actions of countable amenable groups G which are orderable.
What can be done without orderability?
We are looking for a substitute of an invariant order, which allows to

- calculate the entropy of a process,
- find an effective formula for the Pinsker factor,
- in topological dynamics, define asymptotic pairs, capable of distinguishing between zero and positive entropy systems.

Ideally, we would like to mimic the two key properties of the order of \mathbb{Z} :
(1) some kind of invariance: $g_{1}<g_{2} \Longleftrightarrow g_{1} g<g_{2} g$,
(2) the order intervals $\left[g_{1}, g_{2}\right]$ (where $g_{1}<g_{2}$) should be finite and form a Følner sequence.

The concept of a multiorder

Our invention has the form of a family of orders of type \mathbb{Z} (bijections $\mathbb{Z} \rightarrow G$) on which G has a natural action and which carries an invariant measure of entropy zero.

The concept of a multiorder

Our invention has the form of a family of orders of type \mathbb{Z} (bijections $\mathbb{Z} \rightarrow G$) on which G has a natural action and which carries an invariant measure of entropy zero.
We call this object multiorder.

The concept of a multiorder

Our invention has the form of a family of orders of type \mathbb{Z} (bijections $\mathbb{Z} \rightarrow G$) on which G has a natural action and which carries an invariant measure of entropy zero.
We call this object multiorder.
There already exists a similar notion, called invariant random order.

The concept of a multiorder

Our invention has the form of a family of orders of type \mathbb{Z} (bijections $\mathbb{Z} \rightarrow G$) on which G has a natural action and which carries an invariant measure of entropy zero.
We call this object multiorder.
There already exists a similar notion, called invariant random order.
See: [AMR]: Andrei Alpeev, Tom Meyerovitch and Sieye Ryu, Predictability, topological entropy and invariant random orders, ArXiv 2019,

The concept of a multiorder

Our invention has the form of a family of orders of type \mathbb{Z} (bijections $\mathbb{Z} \rightarrow G$) on which G has a natural action and which carries an invariant measure of entropy zero.
We call this object multiorder.
There already exists a similar notion, called invariant random order.
See: [AMR]: Andrei Alpeev, Tom Meyerovitch and Sieye Ryu, Predictability, topological entropy and invariant random orders, ArXiv 2019,
but the idea goes probably back to J. Kieffer (1975).

The concept of a multiorder

Our invention has the form of a family of orders of type \mathbb{Z} (bijections $\mathbb{Z} \rightarrow G$) on which G has a natural action and which carries an invariant measure of entropy zero.
We call this object multiorder.
There already exists a similar notion, called invariant random order.
See: [AMR]: Andrei Alpeev, Tom Meyerovitch and Sieye Ryu, Predictability, topological entropy and invariant random orders, ArXiv 2019,
but the idea goes probably back to J. Kieffer (1975).
An invariant random order is a family of total orders \prec on G, on which G acts as follows: $a g(\prec) b \Longleftrightarrow a g \prec b g$, together with an invariant measure ν on these orders.

The concept of a multiorder

Our invention has the form of a family of orders of type \mathbb{Z} (bijections $\mathbb{Z} \rightarrow G)$ on which G has a natural action and which carries an invariant measure of entropy zero.
We call this object multiorder.
There already exists a similar notion, called invariant random order.
See: [AMR]: Andrei Alpeev, Tom Meyerovitch and Sieye Ryu, Predictability, topological entropy and invariant random orders, ArXiv 2019,
but the idea goes probably back to J. Kieffer (1975).
An invariant random order is a family of total orders \prec on G, on which G acts as follows: $a g(\prec) b \Longleftrightarrow a g \prec b g$, together with an invariant measure ν on these orders.
There is no requirement that the orders are of type \mathbb{Z} or that the order intervals form a Følner sequence.

The concept of a multiorder

Definition 1

Let G be a countable set. A total order \prec on G is of type \mathbb{Z} if every order interval $\left[g_{1}, g_{2}\right]^{\prec}=\left\{g: g=g_{1}\right.$ or $g=g_{2}$ or $\left.g_{1} \prec g \prec g_{2}\right\}$ (where $\left.g_{1} \prec g_{2}\right)$ is finite and there is no minimal and no maximal element of G.

The concept of a multiorder

Definition 1

Let G be a countable set. A total order \prec on G is of type \mathbb{Z} if every order interval $\left[g_{1}, g_{2}\right]^{\prec}=\left\{g: g=g_{1}\right.$ or $g=g_{2}$ or $\left.g_{1} \prec g \prec g_{2}\right\}$ (where $g_{1} \prec g_{2}$) is finite and there is no minimal and no maximal element of G. In other words, (G, \prec) is order-isomorphic to ($\mathbb{Z},<$).

The concept of a multiorder

Definition 1

Let G be a countable set. A total order \prec on G is of type \mathbb{Z} if every order interval $\left[g_{1}, g_{2}\right]^{\prec}=\left\{g: g=g_{1}\right.$ or $g=g_{2}$ or $\left.g_{1} \prec g \prec g_{2}\right\}$ (where $g_{1} \prec g_{2}$) is finite and there is no minimal and no maximal element of G. In other words, (G, \prec) is order-isomorphic to $(\mathbb{Z},<)$. By \mathcal{O}_{G} we denote the family of all orders of G of type \mathbb{Z}.

The concept of a multiorder

```
Definition 1
Let G be a countable set. A total order }\prec\mathrm{ on }G\mathrm{ is of type }\mathbb{Z}\mathrm{ if every
order interval [ }\mp@subsup{g}{1}{},\mp@subsup{g}{2}{}\mp@subsup{]}{}{\prec}={g:g=\mp@subsup{g}{1}{}\mathrm{ or }g=\mp@subsup{g}{2}{}\mathrm{ or }\mp@subsup{g}{1}{}\precg\prec\mp@subsup{g}{2}{}}\mathrm{ (where \(g_{1} \prec g_{2}\) ) is finite and there is no minimal and no maximal element of \(G\). In other words, \((G, \prec)\) is order-isomorphic to \((\mathbb{Z},<)\). By \(\mathcal{O}_{G}\) we denote the family of all orders of \(G\) of type \(\mathbb{Z}\).
```

It can be verified that \mathcal{O}_{G} is a Polish space (but not compact).

The concept of a multiorder

> Definition 1
> Let G be a countable set. A total order \prec on G is of type \mathbb{Z} if every order interval $\left[g_{1}, g_{2}\right]^{\prec}=\left\{g: g=g_{1}\right.$ or $g=g_{2}$ or $\left.g_{1} \prec g \prec g_{2}\right\}$ (where $g_{1} \prec g_{2}$) is finite and there is no minimal and no maximal element of G. In other words, (G, \prec) is order-isomorphic to $(\mathbb{Z},<)$. By \mathcal{O}_{G} we denote the family of all orders of G of type \mathbb{Z}.

It can be verified that \mathcal{O}_{G} is a Polish space (but not compact).

Definition 2

Let G be a countable group. The group acts by homeomorphisms on \mathcal{O}_{G} as follows:

$$
\begin{equation*}
a g(\prec) b \Longleftrightarrow a g \prec b g, \tag{0.1}
\end{equation*}
$$

The concept of a multiorder

Definition 3

Let G be a countable group. By a multiorder we will understand any Borel-measurable G-invariant subset $\tilde{\mathcal{O}}$ of \mathcal{O}_{G} which supports an invariant measure ν.

The concept of a multiorder

Definition 3

Let G be a countable group. By a multiorder we will understand any Borel-measurable G-invariant subset $\tilde{\mathcal{O}}$ of \mathcal{O}_{G} which supports an invariant measure ν.

Definition 4

Let G be a countable amenable group. A multiorder $\tilde{\mathcal{O}}$ is uniformly Folner if for any finite set $K \subset G$ and any $\varepsilon>0$ there exists n such that for any $\prec \in \tilde{\mathcal{O}}$, any order interval $[a, b]^{\prec}$ of length at least n is (K, ε)-invariant.

The concept of a multiorder

Definition 3

Let G be a countable group. By a multiorder we will understand any Borel-measurable G-invariant subset $\tilde{\mathcal{O}}$ of \mathcal{O}_{G} which supports an invariant measure ν.

Definition 4

Let G be a countable amenable group. A multiorder $\tilde{\mathcal{O}}$ is uniformly Folner if for any finite set $K \subset G$ and any $\varepsilon>0$ there exists n such that for any $\prec \in \tilde{\mathcal{O}}$, any order interval $[a, b]^{\prec}$ of length at least n is (K, ε)-invariant.

Multioder can be viewed as a family of bijections bi : $\mathbb{Z} \rightarrow G$ such that $\mathbf{b i}(0)=e$. The action of G on such bijections is a bit more complicated:

$$
\begin{equation*}
(g(\mathbf{b i}))(n)=\mathbf{b i}(n+k) \cdot g^{-1}, \text { where } k \text { is such that } g=\mathbf{b i}(k) . \tag{0.2}
\end{equation*}
$$

The concept of a multiorder

Theorem 1

The assignment $\prec \mapsto \mathbf{b i}_{\prec}$ is a topological conjugacy between the action of G on \mathcal{O}_{G} given by (0.1) and the collection of all anchored bijections from \mathbb{Z} to G equipped with the action given by (0.2).

The concept of a multiorder

Theorem 1

The assignment $\prec \mapsto \mathbf{b i}_{\prec}$ is a topological conjugacy between the action of G on \mathcal{O}_{G} given by (0.1) and the collection of all anchored bijections from \mathbb{Z} to G equipped with the action given by (0.2).

Proof. Continuity and injectivity are obvious.

The concept of a multiorder

Theorem 1

The assignment $\prec \mapsto \mathbf{b i}_{\prec}$ is a topological conjugacy between the action of \mathcal{G} on \mathcal{O}_{G} given by (0.1) and the collection of all anchored bijections from \mathbb{Z} to G equipped with the action given by (0.2).

Proof. Continuity and injectivity are obvious.
It is also quite clear that any anchored bijection bi : $\mathbb{Z} \rightarrow G$ is associated to some order $\prec \in \mathcal{O}_{G}$.

The concept of a multiorder

Abstract

Theorem 1 The assignment $\prec \mapsto \mathbf{b i}_{\prec}$, is a topological conjugacy between the action of G on \mathcal{O}_{G} given by (0.1) and the collection of all anchored bijections from \mathbb{Z} to G equipped with the action given by (0.2).

Proof. Continuity and injectivity are obvious.
It is also quite clear that any anchored bijection $\mathbf{b i}: \mathbb{Z} \rightarrow G$ is associated to some order $\prec \in \mathcal{O}_{G}$.
By (0.2), we have $\left(g\left(\mathbf{b i}_{\prec}\right)\right)(0)=\mathbf{b i}_{\prec}(k) \cdot g^{-1}=g g^{-1}=e$, so $g\left(\mathbf{b i}_{\prec}\right)$ is anchored.

The concept of a multiorder

Theorem 1

The assignment $\prec \mapsto \mathbf{b i}_{\prec}$, is a topological conjugacy between the action of G on \mathcal{O}_{G} given by (0.1) and the collection of all anchored bijections from \mathbb{Z} to G equipped with the action given by (0.2).

Proof. Continuity and injectivity are obvious.
It is also quite clear that any anchored bijection $\mathbf{b i}: \mathbb{Z} \rightarrow G$ is associated to some order $\prec \in \mathcal{O}_{G}$.
By (0.2), we have $\left(g\left(\mathbf{b i}_{\prec}\right)\right)(0)=\mathbf{b i}_{\prec}(k) \cdot g^{-1}=g g^{-1}=e$, so $\left.g(\mathbf{b i})_{<}\right)$is anchored.
To complete the proof we need to show that

$$
\left(g\left(\mathbf{b} \mathbf{i}_{\prec}\right)\right)(i)=\mathbf{b} \mathbf{i}_{g(\alpha)}(i),
$$

for all $i \in \mathbb{Z}$.

To show:

$$
\left(g\left(\mathbf{b} \mathbf{i}_{\prec}\right)\right)(i)=\mathbf{b} \mathbf{i}_{g(\prec)}(i) .
$$

To show:

$$
\left(g\left(\mathbf{b} \mathbf{i}_{\prec}\right)\right)(i)=\mathbf{b} \mathbf{i}_{g(\prec)}(i) .
$$

For $i=0$ this follows from both $\mathbf{b i}_{\prec}$ and $g\left(\mathrm{bi}_{\prec}\right)$ being anchored.

To show:

$$
\left(g\left(\mathbf{b} \mathbf{i}_{\prec}\right)\right)(i)=\mathbf{b} \mathbf{i}_{g(\prec)}(i) .
$$

For $i=0$ this follows from both $\mathbf{b i _ { \prec }}$ and $g\left(\right.$ bi $\left.\boldsymbol{L}_{\prec}\right)$ being anchored. Choose $i>0$ and let $h=\mathbf{b} \mathbf{i}_{g(\prec)}(i)$ (we omit the similar case $i<0$).

To show:

$$
\left(g\left(\mathbf{b} \mathbf{i}_{\prec}\right)\right)(i)=\mathbf{b} \mathbf{i}_{g(\prec)}(i)
$$

For $i=0$ this follows from both $\mathbf{b i}_{\prec}$ and $g\left(\mathrm{bi}_{\prec}\right)$ being anchored. Choose $i>0$ and let $h=\mathbf{b i} \mathbf{i}_{g(\prec)}(i)$ (we omit the similar case $i<0$). Then $[e, h]^{g(\prec)}$ in an order interval (with respect to $g(\prec)$) of length $i+1$.

To show:

$$
\left(g\left(\mathbf{b} \mathbf{i}_{\prec}\right)\right)(i)=\mathbf{b} \mathbf{i}_{g(\prec)}(i)
$$

For $i=0$ this follows from both $\mathbf{b i}_{\prec}$ and $g\left(\mathrm{bi}_{\prec}\right)$ being anchored.
Choose $i>0$ and let $h=\mathbf{b i}_{g(\prec)}(i)$ (we omit the similar case $i<0$).
Then $[e, h]^{g(\prec)}$ in an order interval (with respect to $g(\prec)$) of length $i+1$.

According to (0.1), $[g, h g]^{\prec}$ is an order interval of length $i+1$ with respect to \prec.

To show:

$$
\left(g\left(\mathbf{b} \mathbf{i}_{\prec}\right)\right)(i)=\mathbf{b} \mathbf{i}_{g(\prec)}(i)
$$

For $i=0$ this follows from both $\mathbf{b} \mathbf{i}_{\prec}$ and $g\left(\mathrm{bi}_{\prec}\right)$ being anchored.
Choose $i>0$ and let $h=\mathbf{b i}_{g(\prec)}(i)$ (we omit the similar case $i<0$).
Then $[e, h]^{g(\prec)}$ in an order interval (with respect to $g(\prec)$) of length $i+1$.

According to (0.1), $[g, h g]^{\prec}$ is an order interval of length $i+1$ with respect to \prec.

This implies that if k is such that $\mathbf{b} \mathbf{i}_{\prec}(k)=g$, then $h g=\mathbf{b} \mathbf{i}_{\prec}(i+k)$, i.e. $h=\mathbf{b i}_{\prec}(i+k) \cdot g^{-1}$.

To show:

$$
\left(g\left(\mathbf{b} \mathbf{i}_{\prec}\right)\right)(i)=\mathbf{b} \mathbf{i}_{g(\prec)}(i)
$$

For $i=0$ this follows from both $\mathbf{b i}_{\prec}$ and $g\left(\mathrm{bi}_{\prec}\right)$ being anchored.
Choose $i>0$ and let $h=\mathbf{b i}_{g(\prec)}(i)$ (we omit the similar case $i<0$).
Then $[e, h]^{g(\prec)}$ in an order interval (with respect to $g(\prec)$) of length $i+1$.

According to (0.1), $[g, h g]^{\prec}$ is an order interval of length $i+1$ with respect to \prec.

This implies that if k is such that $\mathbf{b} \mathbf{i}_{\prec}(k)=g$, then $h g=\mathbf{b} \mathbf{i}_{\prec}(i+k)$, i.e. $h=\mathbf{b i}_{\prec}(i+k) \cdot g^{-1}$.
By (0.2), the latter expression equals $\left(g\left(\mathbf{b} \mathbf{i}_{\prec}\right)\right)(i)$, and we are done.

Notation

Consider a bijection bi : $\mathbb{Z} \rightarrow G$ such that $\mathbf{b i}(0)=\boldsymbol{e}$, and let $\prec \in \mathcal{O}_{G}$ be the associated order of type \mathbb{Z} on G. We will write:

Notation

Consider a bijection bi : $\mathbb{Z} \rightarrow G$ such that $\mathbf{b i}(0)=e$, and let $\prec \in \mathcal{O}_{G}$ be the associated order of type \mathbb{Z} on G. We will write:

$$
\left.n^{\prec}=\mathbf{b i}(n),(n \in \mathbb{Z}) \quad \text { (attention }(-n)^{\prec} \neq\left(n^{\prec}\right)^{-1}\right) \text {, }
$$

Notation

Consider a bijection bi : $\mathbb{Z} \rightarrow G$ such that $\mathbf{b i}(0)=e$, and let $\prec \in \mathcal{O}_{G}$ be the associated order of type \mathbb{Z} on G. We will write:
$n^{\prec}=\mathbf{b i}(n),(n \in \mathbb{Z})$ (attention $\left.(-n)^{\prec} \neq\left(n^{\prec}\right)^{-1}\right)$,
$[m, n]^{\prec},[n, \infty)^{\prec},(-\infty,-n]^{\prec}(m, n \in \mathbb{Z})$,

Notation

Consider a bijection bi : $\mathbb{Z} \rightarrow G$ such that $\mathbf{b i}(0)=e$, and let $\prec \in \mathcal{O}_{G}$ be the associated order of type \mathbb{Z} on G. We will write:

$$
\left.n^{\prec}=\mathbf{b i}(n),(n \in \mathbb{Z}) \quad \text { attention }(-n)^{\prec} \neq\left(n^{\prec}\right)^{-1}\right) \text {, }
$$

$[m, n]^{\prec},[n, \infty)^{\prec},(-\infty,-n]^{\prec}(m, n \in \mathbb{Z})$,
$[a, b]^{\prec},[a, \infty)^{\prec},(-\infty, a]^{\prec}(a, b \in G)$.

Notation

Consider a bijection bi : $\mathbb{Z} \rightarrow G$ such that $\mathbf{b i}(0)=e$, and let $\prec \in \mathcal{O}_{G}$ be the associated order of type \mathbb{Z} on G. We will write:
$n^{\prec}=\mathbf{b i}(n),(n \in \mathbb{Z})$ (attention $\left.(-n)^{\prec} \neq\left(n^{\prec}\right)^{-1}\right)$,
$[m, n]^{\prec},[n, \infty)^{\prec},(-\infty,-n]^{\prec}(m, n \in \mathbb{Z})$,
$[a, b]^{\prec},[a, \infty)^{\prec},(-\infty, a]^{\prec}(a, b \in G)$.
Mixed notation: $[a, a+n]^{\prec},[a-n, a]^{\prec}$,
$[F, F+n]^{\prec}=\bigcup_{g \in F}[g, g+n]^{\prec}$.

Notation

Consider a bijection bi : $\mathbb{Z} \rightarrow G$ such that $\mathbf{b i}(0)=e$, and let $\prec \in \mathcal{O}_{G}$ be the associated order of type \mathbb{Z} on G. We will write:

$$
\begin{aligned}
& \left.n^{\prec}=\mathbf{b i}(n),(n \in \mathbb{Z}) \quad \text { (attention }(-n)^{\prec} \neq\left(n^{\prec}\right)^{-1}\right), \\
& {[m, n]^{\prec},[n, \infty)^{\prec},(-\infty,-n]^{\prec}(m, n \in \mathbb{Z}),} \\
& {[a, b]^{\prec},[a, \infty)^{\prec},(-\infty, a]^{\prec}(a, b \in G) .}
\end{aligned}
$$

Mixed notation: $[a, a+n]^{\prec},[a-n, a]^{\prec}$,
$[F, F+n]^{\prec}=\bigcup_{g \in F}[g, g+n]^{\prec}$.
If G acts on a measurable space X and \mathcal{P} is a partition of X then

Notation

Consider a bijection bi : $\mathbb{Z} \rightarrow G$ such that $\mathbf{b i}(0)=e$, and let $\prec \in \mathcal{O}_{G}$ be the associated order of type \mathbb{Z} on G. We will write:
$n^{\prec}=\mathbf{b i}(n),(n \in \mathbb{Z})$ (attention $\left.(-n)^{\prec} \neq\left(n^{\prec}\right)^{-1}\right)$,
$[m, n]^{\prec},[n, \infty)^{\prec},(-\infty,-n]^{\prec}(m, n \in \mathbb{Z})$,
$[a, b]^{\prec},[a, \infty)^{\prec},(-\infty, a]^{\prec}(a, b \in G)$.
Mixed notation: $[a, a+n]^{\prec},[a-n, a]^{\prec}$,
$[F, F+n]^{\prec}=\bigcup_{g \in F}[g, g+n]^{\prec}$.
If G acts on a measurable space X and \mathcal{P} is a partition of X then

$$
\mathcal{P}^{D}=\bigvee_{g \in D} g^{-1}(\mathcal{P}),
$$

Notation

Consider a bijection bi : $\mathbb{Z} \rightarrow G$ such that $\mathbf{b i}(0)=e$, and let $\prec \in \mathcal{O}_{G}$ be the associated order of type \mathbb{Z} on G. We will write:

$$
\begin{aligned}
& \left.n^{\prec}=\mathbf{b i}(n),(n \in \mathbb{Z}) \quad \text { (attention }(-n)^{\prec} \neq\left(n^{\prec}\right)^{-1}\right), \\
& {[m, n]^{\prec},[n, \infty)^{\prec},(-\infty,-n]^{\prec} \quad(m, n \in \mathbb{Z}),} \\
& {[a, b]^{\prec},[a, \infty)^{\prec},(-\infty, a]^{\prec}(a, b \in G) .}
\end{aligned}
$$

Mixed notation: $[a, a+n]^{\prec},[a-n, a]^{\prec}$, $[F, F+n]^{\prec}=\bigcup_{g \in F}[g, g+n]^{\prec}$.

If G acts on a measurable space X and \mathcal{P} is a partition of X then

$$
\mathcal{P}^{D}=\bigvee_{g \in D} g^{-1}(\mathcal{P}) \text {, for example } \mathcal{P}_{\prec}^{-}=\mathcal{P}^{(-\infty,-1]^{\prec}}=\bigvee_{g \prec(-1)^{\prec}} g^{-1}(\mathcal{P})
$$

("random past").

Key theorem

Theorem 2

Let G be a countable amenable group. There exists a uniformly Følner multiorder $\tilde{\mathcal{O}}$ which supports at least one invariant measure and all invariant measures it supports have entropy zero.

How useful are multiorders

First of all, they are ubiquitous:

How useful are multiorders

First of all, they are ubiquitous:
Theorem 3 (project)
Let (X, μ, G) denote a free measure-theoretic action of a countable amenable group G. Then there exists a uniformly FøIner multiorder $(\tilde{\mathcal{O}}, \nu, G)$ which is a measure-theoretic factor of (X, μ, G).

How useful are multiorders

First of all, they are ubiquitous:
Theorem 3 (project)
Let (X, μ, G) denote a free measure-theoretic action of a countable amenable group G. Then there exists a uniformly FøIner multiorder $(\tilde{\mathcal{O}}, \nu, \mathcal{G})$ which is a measure-theoretic factor of (X, μ, \mathcal{G}).

Definition 5

By a multiordered dynamical system (X, μ, G, φ) we will mean (X, μ, G) with a fixed factor $\operatorname{map} \varphi: X \rightarrow \tilde{\mathcal{O}}$, where $(\tilde{\mathcal{O}}, \nu, G)$ is a multiorder. By $\left\{\mu_{\prec}: \prec \in \tilde{\mathcal{O}}\right\}$ we will denote the disintegration of μ with respect to ν.

How useful are multiorders

First of all, they are ubiquitous:
Theorem 3 (project)
Let (X, μ, G) denote a free measure-theoretic action of a countable amenable group G. Then there exists a uniformly FøIner multiorder $(\tilde{\mathcal{O}}, \nu, \mathcal{G})$ which is a measure-theoretic factor of (X, μ, \mathcal{G}).

Definition 5

By a multiordered dynamical system (X, μ, G, φ) we will mean (X, μ, G) with a fixed factor map $\varphi: X \rightarrow \tilde{\mathcal{O}}$, where ($\tilde{\mathcal{O}}, \nu, \mathcal{G}$) is a multiorder. By $\left\{\mu_{\prec}: \prec \in \tilde{\mathcal{O}}\right\}$ we will denote the disintegration of μ with respect to ν.

Theorem 4

Let (X, μ, G, φ) be a multiordered dynamical system. For any finite partition \mathcal{P} of X the following equality holds:

$$
h(\mu, \mathcal{P} \mid \tilde{\mathcal{O}})=\int H\left(\mu_{\prec}, \mathcal{P} \mid \mathcal{P}_{\prec}^{-}\right) d \nu(\prec)=\int H\left(\mu_{\prec}, \mathcal{P} \mid \mathcal{P}_{\prec}^{+}\right) d \nu(\prec) .
$$

What is new
 For an invariant random order we have a similar formula (see [AMR]):

What is new

For an invariant random order we have a similar formula (see [AMR]):

$$
\begin{equation*}
h(\mu, \mathcal{P})=\int H\left(\mu, \mathcal{P} \mid \mathcal{P}_{\prec}^{-}\right) d \nu(\prec), \tag{0.3}
\end{equation*}
$$

What is new

For an invariant random order we have a similar formula (see [AMR]):

$$
\begin{equation*}
h(\mu, \mathcal{P})=\int H\left(\mu, \mathcal{P} \mid \mathcal{P}_{\prec}^{-}\right) d \nu(\prec), \tag{0.3}
\end{equation*}
$$

which corresponds to ours

$$
\begin{equation*}
h(\mu, \mathcal{P} \mid \tilde{\mathcal{O}})=\int H\left(\mu_{\prec}, \mathcal{P} \mid \mathcal{P}_{\prec}^{-}\right) d \nu(\prec) \tag{0.4}
\end{equation*}
$$

What is new

For an invariant random order we have a similar formula (see [AMR]):

$$
\begin{equation*}
h(\mu, \mathcal{P})=\int H\left(\mu, \mathcal{P} \mid \mathcal{P}_{\prec}^{-}\right) d \nu(\prec), \tag{0.3}
\end{equation*}
$$

which corresponds to ours

$$
\begin{equation*}
h(\mu, \mathcal{P} \mid \tilde{\mathcal{O}})=\int H\left(\mu_{\prec}, \mathcal{P} \mid \mathcal{P}_{\prec}^{-}\right) d \nu(\prec) \tag{0.4}
\end{equation*}
$$

applied to the independent joining (product) of (X, μ, G) with $(\tilde{\mathcal{O}}, \nu, G)$.

What is new

For an invariant random order we have a similar formula (see [AMR]):

$$
\begin{equation*}
h(\mu, \mathcal{P})=\int H\left(\mu, \mathcal{P} \mid \mathcal{P}_{\prec}^{-}\right) d \nu(\prec), \tag{0.3}
\end{equation*}
$$

which corresponds to ours

$$
\begin{equation*}
h(\mu, \mathcal{P} \mid \tilde{\mathcal{O}})=\int H\left(\mu_{\prec}, \mathcal{P} \mid \mathcal{P}_{\prec}^{-}\right) d \nu(\prec) \tag{0.4}
\end{equation*}
$$

applied to the independent joining (product) of (X, μ, G) with $(\tilde{\mathcal{O}}, \nu, G)$.
That is to say, invariant random order is external, while multiorder is internal to the system (X, μ, G) (plus it is uniformly Følner).

What is new

For an invariant random order we have a similar formula (see [AMR]):

$$
\begin{equation*}
h(\mu, \mathcal{P})=\int H\left(\mu, \mathcal{P} \mid \mathcal{P}_{\prec}^{-}\right) d \nu(\prec), \tag{0.3}
\end{equation*}
$$

which corresponds to ours

$$
\begin{equation*}
h(\mu, \mathcal{P} \mid \tilde{\mathcal{O}})=\int H\left(\mu_{\prec}, \mathcal{P} \mid \mathcal{P}_{\prec}^{-}\right) d \nu(\prec) \tag{0.4}
\end{equation*}
$$

applied to the independent joining (product) of (X, μ, G) with $(\tilde{\mathcal{O}}, \nu, G)$.
That is to say, invariant random order is external, while multiorder is internal to the system (X, μ, G) (plus it is uniformly Følner).

This causes that the proof of Theorem 3 (formula (0.4)) is much longer and more intricate than that of (0.3).

What is new

For an invariant random order we have a similar formula (see [AMR]):

$$
\begin{equation*}
h(\mu, \mathcal{P})=\int H\left(\mu, \mathcal{P} \mid \mathcal{P}_{\prec}^{-}\right) d \nu(\prec), \tag{0.3}
\end{equation*}
$$

which corresponds to ours

$$
\begin{equation*}
h(\mu, \mathcal{P} \mid \tilde{\mathcal{O}})=\int H\left(\mu_{\prec}, \mathcal{P} \mid \mathcal{P}_{\prec}^{-}\right) d \nu(\prec) \tag{0.4}
\end{equation*}
$$

applied to the independent joining (product) of (X, μ, G) with $(\tilde{\mathcal{O}}, \nu, G)$.
That is to say, invariant random order is external, while multiorder is internal to the system (X, μ, G) (plus it is uniformly Følner).

This causes that the proof of Theorem 3 (formula (0.4)) is much longer and more intricate than that of (0.3). In particular, (0.4) seems to really need the uniform Følner property.

What we hope for

We hope to be able to prove the following:

What we hope for

We hope to be able to prove the following:

Conjecture 1

Let (X, μ, G, φ) be a multiordered dynamical system. Assume that the underlying multiorder ($\tilde{\mathcal{O}}, \nu, G)$ has entropy zero (which is possible if the Pinsker factor is free). Let \mathcal{P} be a finite partition of X. Then the Pinsker sigma-algebra $\Pi_{\mathcal{P}}$ of the process generated by \mathcal{P} is characterized by

$$
A \in \Pi_{\mathcal{P}} \Longleftrightarrow \forall_{\prec \in \tilde{\mathcal{O}}} A \cap \varphi^{-1}(\prec) \in \bigcap_{n \geq 1} \mathcal{P}^{(-\infty,-n]^{\prec}} .
$$

What we hope for

We hope to be able to prove the following:

Conjecture 1

Let (X, μ, G, φ) be a multiordered dynamical system. Assume that the underlying multiorder ($\tilde{\mathcal{O}}, \nu, \mathcal{G}$) has entropy zero (which is possible if the Pinsker factor is free). Let \mathcal{P} be a finite partition of X. Then the
Pinsker sigma-algebra $\Pi_{\mathcal{P}}$ of the process generated by \mathcal{P} is characterized by

$$
A \in \Pi_{\mathcal{P}} \Longleftrightarrow \forall_{\prec \in \tilde{\mathcal{O}}} A \cap \varphi^{-1}(\prec) \in \bigcap_{n \geq 1} \mathcal{P}^{(-\infty,-n]^{\prec}} .
$$

Compare it with the classical formula for \mathbb{Z}-actions:

$$
\Pi_{\mathcal{P}}=\bigcap_{n \geq 1} \mathcal{P}^{(-\infty,-n]}
$$

What we hope for

In topological dynamics, we hope to be able to prove:

What we hope for

In topological dynamics, we hope to be able to prove:

Definition 6

A pair $x_{1} \neq x_{2}$ in a multiordered topological dynamical system (X, G, φ) (φ is defined on a full invariant measure set) is φ-asymptotic if $\varphi\left(x_{1}\right)^{+}=\varphi\left(x_{2}\right)^{+}=\prec^{+}$and

$$
\lim _{n \rightarrow \infty} \operatorname{dist}\left(n^{\prec}\left(x_{1}\right), n^{\prec}\left(x_{2}\right)\right)=0 .
$$

What we hope for

In topological dynamics, we hope to be able to prove:

Definition 6

A pair $x_{1} \neq x_{2}$ in a multiordered topological dynamical system (X, G, φ) (φ is defined on a full invariant measure set) is φ-asymptotic if $\varphi\left(x_{1}\right)^{+}=\varphi\left(x_{2}\right)^{+}=\prec^{+}$and

$$
\lim _{n \rightarrow \infty} \operatorname{dist}\left(n^{\prec}\left(x_{1}\right), n^{\prec}\left(x_{2}\right)\right)=0 .
$$

Conjecture 2

Let (Y, G) be topological dynamical system. Then the system has topological entropy zero if and only if it is a topological factor of a multiordered system (X, G, φ) with no φ-asymptotic pairs.

Examples

Let $G=\mathbb{Z}$. Let \mathbf{T} be the dyadic odometer, i.e. each \mathcal{T}_{k} divides \mathbb{Z} into intervals of length 2^{k}.

Examples

Let $G=\mathbb{Z}$. Let \mathbf{T} be the dyadic odometer, i.e. each \mathcal{T}_{k} divides \mathbb{Z} into intervals of length 2^{k}.
Every shape $S^{\prime} \in \mathcal{S}_{k+1}$ (interval of length 2^{k+1}) splits into two subtiles (intervals of length 2^{k}).

Examples

Let $G=\mathbb{Z}$. Let \mathbf{T} be the dyadic odometer, i.e. each \mathcal{T}_{k} divides \mathbb{Z} into intervals of length 2^{k}.
Every shape $S^{\prime} \in \mathcal{S}_{k+1}$ (interval of length 2^{k+1}) splits into two subtiles (intervals of length 2^{k}).
If enumerate them always from left to right, then the order $\prec_{\mathcal{T}}$ coincides with the standard order of \mathbb{Z}, regardless of \mathcal{T}.

Examples

Let $G=\mathbb{Z}$. Let \mathbf{T} be the dyadic odometer, i.e. each \mathcal{T}_{k} divides \mathbb{Z} into intervals of length 2^{k}.
Every shape $S^{\prime} \in \mathcal{S}_{k+1}$ (interval of length 2^{k+1}) splits into two subtiles (intervals of length 2^{k}).
If enumerate them always from left to right, then the order $\prec_{\mathcal{T}}$ coincides with the standard order of \mathbb{Z}, regardless of \mathcal{T}.
But we can enumerate them from left to right for even k and from right to left for odd k. Then we will get a family of weird orders (depending on \mathcal{T}) as in the figure:

Examples

Let $G=\mathbb{Z}$. Let \mathbf{T} be the dyadic odometer, i.e. each \mathcal{T}_{k} divides \mathbb{Z} into intervals of length 2^{k}.
Every shape $S^{\prime} \in \mathcal{S}_{k+1}$ (interval of length 2^{k+1}) splits into two subtiles (intervals of length 2^{k}).
If enumerate them always from left to right, then the order $\prec_{\mathcal{T}}$ coincides with the standard order of \mathbb{Z}, regardless of \mathcal{T}.
But we can enumerate them from left to right for even k and from right to left for odd k. Then we will get a family of weird orders (depending on \mathcal{T}) as in the figure:

Examples

Let $G=\mathbb{Z}$. Let \mathbf{T} be the dyadic odometer, i.e. each \mathcal{T}_{k} divides \mathbb{Z} into intervals of length 2^{k}.
Every shape $S^{\prime} \in \mathcal{S}_{k+1}$ (interval of length 2^{k+1}) splits into two subtiles (intervals of length 2^{k}).
If enumerate them always from left to right, then the order $\prec_{\mathcal{T}}$ coincides with the standard order of \mathbb{Z}, regardless of \mathcal{T}.
But we can enumerate them from left to right for even k and from right to left for odd k. Then we will get a family of weird orders (depending on \mathcal{T}) as in the figure:

Nonetheless, these orders allow to compute (in a nonstandard way) the entropy and (hopefully) the Pinsker factor, for example in Toeplitz systems.

Examples

Let $G=\mathbb{Z}^{2}$. Let \mathbf{T} have the following sets of shapes \mathcal{S}_{k} : all of them are squares $2^{k} \times 2^{k}$, but we distinguish four types, depending on the ordering of subtiles:

Examples

Let $G=\mathbb{Z}^{2}$. Let \mathbf{T} have the following sets of shapes \mathcal{S}_{k} : all of them are squares $2^{k} \times 2^{k}$, but we distinguish four types, depending on the ordering of subtiles:

$$
\begin{aligned}
& \sqcup_{k+1}=\left[\begin{array}{ll}
\sqsupset_{k} & \sqsubset_{k} \\
\sqcup_{k} & \sqcup_{k}
\end{array}\right]\left[\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right], \sqsubset_{k+1}=\left[\begin{array}{ll}
\sqsubset_{k} & \sqcup_{k} \\
\sqsubset_{k} & \Pi_{k}
\end{array}\right]\left[\begin{array}{ll}
3 & 4 \\
2 & 1
\end{array}\right], \\
& \sqsupset_{k+1}=\left[\begin{array}{ll}
\sqcup_{k} & \sqsupset_{k} \\
\square_{k} & \sqsupset_{k}
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right], \sqcap_{k+1}=\left[\begin{array}{ll}
\square_{k} & \square_{k} \\
\sqsupset_{k} & \sqsubset_{k}
\end{array}\right]\left[\begin{array}{ll}
3 & 2 \\
4 & 1
\end{array}\right] .
\end{aligned}
$$

Examples

Let $G=\mathbb{Z}^{2}$. Let \mathbf{T} have the following sets of shapes \mathcal{S}_{k} : all of them are squares $2^{k} \times 2^{k}$, but we distinguish four types, depending on the ordering of subtiles:

$$
\begin{aligned}
& \sqcup_{k+1}=\left[\begin{array}{ll}
\sqsupset_{k} & \sqsubset_{k} \\
\sqcup_{k} & \sqcup_{k}
\end{array}\right]\left[\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right], \sqsubset_{k+1}=\left[\begin{array}{ll}
\sqsubset_{k} & \sqcup_{k} \\
\sqsubset_{k} & \Pi_{k}
\end{array}\right]\left[\begin{array}{ll}
3 & 4 \\
2 & 1
\end{array}\right], \\
& \sqsupset_{k+1}
\end{aligned}=\left[\begin{array}{ll}
\sqcup_{k} & \sqsupset_{k} \\
\square_{k} & \sqsupset_{k}
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right], \sqcap_{k+1}=\left[\begin{array}{ll}
\square_{k} & \square_{k} \\
\sqsupset_{k} & \sqsubset_{k}
\end{array}\right]\left[\begin{array}{ll}
3 & 2 \\
4 & 1
\end{array}\right] ., ~ \$
$$

With this enumeration, for every $\mathcal{T} \in \mathbf{T}$ the ordering $\prec \mathcal{T}$ of \mathbb{Z}^{2} follows the familiar pattern of the socalled Hilbert space-filling curve, as shown on the figure:

Examples

Let $G=\mathbb{Z}^{2}$. Let \mathbf{T} have the following sets of shapes \mathcal{S}_{k} : all of them are squares $2^{k} \times 2^{k}$, but we distinguish four types, depending on the ordering of subtiles:

$$
\begin{aligned}
& \sqcup_{k+1}=\left[\begin{array}{ll}
\sqsupset_{k} & \sqsubset_{k} \\
\sqcup_{k} & \sqcup_{k}
\end{array}\right]\left[\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right], \sqsubset_{k+1}=\left[\begin{array}{ll}
\square_{k} & \sqcup_{k} \\
\sqsubset_{k} & \Pi_{k}
\end{array}\right]\left[\begin{array}{ll}
3 & 4 \\
2 & 1
\end{array}\right], \\
& \sqsupset_{k+1}=\left[\begin{array}{ll}
\sqcup_{k} & \sqsupset_{k} \\
\square_{k} & \sqsupset_{k}
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right], \sqcap_{k+1}=\left[\begin{array}{ll}
\square_{k} & \square_{k} \\
\sqsupset_{k} & \sqsubset_{k}
\end{array}\right]\left[\begin{array}{ll}
3 & 2 \\
4 & 1
\end{array}\right] .
\end{aligned}
$$

With this enumeration, for every $\mathcal{T} \in \mathbf{T}$ the ordering $\prec \mathcal{T}$ of \mathbb{Z}^{2} follows the familiar pattern of the socalled Hilbert space-filling curve, as shown on the figure:

Examples

Let $G=\mathbb{Z}^{2}$. Let \mathbf{T} have the following sets of shapes \mathcal{S}_{k} : all of them are squares $2^{k} \times 2^{k}$, but we distinguish four types, depending on the ordering of subtiles:

$$
\begin{aligned}
& \sqcup_{k+1}=\left[\begin{array}{ll}
\sqsupset_{k} & \sqsubset_{k} \\
\sqcup_{k} & \sqcup_{k}
\end{array}\right]\left[\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right], \sqsubset_{k+1}=\left[\begin{array}{ll}
\square_{k} & \sqcup_{k} \\
\sqsubset_{k} & \Pi_{k}
\end{array}\right]\left[\begin{array}{ll}
3 & 4 \\
2 & 1
\end{array}\right], \\
& \sqsupset_{k+1}=\left[\begin{array}{ll}
\sqcup_{k} & \sqsupset_{k} \\
\square_{k} & \sqsupset_{k}
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right], \sqcap_{k+1}=\left[\begin{array}{ll}
\square_{k} & \square_{k} \\
\sqsupset_{k} & \sqsubset_{k}
\end{array}\right]\left[\begin{array}{ll}
3 & 2 \\
4 & 1
\end{array}\right] .
\end{aligned}
$$

With this enumeration, for every $\boldsymbol{T} \in \mathbf{T}$ the ordering $\prec \mathcal{T}$ of \mathbb{Z}^{2} follows the familiar pattern of the socalled Hilbert space-filling curve, as shown on the figure:
(There are uncountably many such infinite curves, depending on \mathcal{T}).

Examples

Let $G=\mathbb{Z}^{2}$. Let \mathbf{T} have the following sets of shapes \mathcal{S}_{k} : all of them are squares $2^{k} \times 2^{k}$, but we distinguish four types, depending on the ordering of subtiles:

$$
\begin{aligned}
& \sqcup_{k+1}=\left[\begin{array}{ll}
\sqsupset_{k} & \sqsubset_{k} \\
\sqcup_{k} & \sqcup_{k}
\end{array}\right]\left[\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right], \sqsubset_{k+1}=\left[\begin{array}{ll}
\sqsubset_{k} & \sqcup_{k} \\
\sqsubset_{k} & \Pi_{k}
\end{array}\right]\left[\begin{array}{ll}
3 & 4 \\
2 & 1
\end{array}\right], \\
& \sqsupset_{k+1}=\left[\begin{array}{ll}
\sqcup_{k} & \sqsupset_{k} \\
\square_{k} & \sqsupset_{k}
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right], \sqcap_{k+1}=\left[\begin{array}{ll}
\square_{k} & \Pi_{k} \\
\sqsupset_{k} & \sqsubset_{k}
\end{array}\right]\left[\begin{array}{ll}
3 & 2 \\
4 & 1
\end{array}\right] .
\end{aligned}
$$

With this enumeration, for every $\boldsymbol{T} \in \mathbf{T}$ the ordering $\prec \mathcal{T}$ of \mathbb{Z}^{2} follows the familiar pattern of the socalled Hilbert space-filling curve, as shown on the figure:
(There are uncountably many such infinite curves, depending on \mathcal{T}).
These orders have the (rare) property "successor is a neighbor".

THANK YOU!

