The Ergodic Hierarchy of Mixing, van der Corput's difference theorem, and the ergodic theory of noncommuting operators

> Ergodic Theory and Dynamical Systems Seminar at Wrocław University of Technology

Based on https://arxiv.org/abs/2303.11832

Sohail Farhangi Slides available on sohailfarhangi.com

March 23, 2023

Sohail Farhangi

Mixing, vdC difference thm, Noncommuting ergodic thms

Overview

Review

- Van der Corput's difference theorem and some applications
- Mixing properties
- 2 Mixing van der Corput difference theorems
- 3 Ergodic theorems for noncommuting operators
 - Background
 - New results from mixing vdCs

Examples of systems with singular spectrum

Table of Contents

- Van der Corput's difference theorem and some applications
- Mixing properties

2 Mixing van der Corput difference theorems

- 3 Ergodic theorems for noncommuting operators
 - Background
 - New results from mixing vdCs

4 Examples of systems with singular spectrum

The Classical van der Corput Difference Theorem

Definition

A sequence $(x_n)_{n=1}^{\infty} \subseteq [0,1]$ is **uniformly distributed** if for any open interval $(a,b) \subseteq [0,1]$ we have

$$\lim_{N\to\infty}\frac{1}{N}\left|\left\{1\leq n\leq N\mid x_n\in(a,b)\right\}\right|=b-a. \tag{1}$$

Theorem (van der Corput, [27])

If $(x_n)_{n=1}^{\infty} \subseteq [0,1]$ is such that $(x_{n+h} - x_n)_{n=1}^{\infty}$ is uniformly distributed for every $h \in \mathbb{N}$, then $(x_n)_{n=1}^{\infty}$ is itself uniformly distributed.

Corollary

If $\alpha \in \mathbb{R}$ is irrational, then $(n^2 \alpha)_{n=1}^{\infty}$ is uniformly distributed.

Sohail Farhangi

Theorem (HvdCDT1, [3, Theorem 1.4])

If \mathcal{H} is a Hilbert space and $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\langle x_{n+h},x_n\rangle=0,$$
(2)

for every $h \in \mathbb{N}$, then

$$\lim_{N\to\infty} \left\| \frac{1}{N} \sum_{n=1}^{N} x_n \right\| = 0.$$
 (3)

Theorem (HvdCDT2, [3, Page 3])

If ${\mathcal H}$ is a Hilbert space and $(x_n)_{n=1}^\infty\subseteq {\mathcal H}$ is a bounded sequence satisfying

$$\lim_{h \to \infty} \limsup_{N \to \infty} \left| \frac{1}{N} \sum_{n=1}^{N} \langle x_{n+h}, x_n \rangle \right| = 0, \text{ then}$$

$$\lim_{N \to \infty} \left| \left| \frac{1}{N} \sum_{n=1}^{N} x_n \right| \right| = 0.$$
(5)

Hilbertian van der Corput Difference Theorems 3/3

Theorem (HvdCDT3, [3, Theorem 1.5], or [18, Lemmas 4.9, 7.5])

If \mathcal{H} is a Hilbert space and $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{H \to \infty} \frac{1}{H} \sum_{h=1}^{H} \limsup_{N \to \infty} \left| \frac{1}{N} \sum_{n=1}^{N} \langle x_{n+h}, x_n \rangle \right| = 0, \text{ then}$$
(6)
$$\lim_{N \to \infty} \left| \left| \frac{1}{N} \sum_{n=1}^{N} x_n \right| \right| = 0.$$
(7)

Question

Why would we ever use HvdCDT1 or HvdCDT2 when they are both corollaries of HvdCDT3? Why are there at least 3 Hilbertian vdCDTs and only 1 vdCDT in the theory of uniform distribution?

Sohail Farhangi

Frame 7

Applications of HvdCDTs 1/2

Theorem (Poincaré)

For any measure preserving system (m.p.s.) (X, \mathcal{B}, μ, T) , and any $A \in \mathcal{B}$ with $\mu(A) > 0$, there exists $n \in \mathbb{N}$ for which

$$u(A \cap T^{-n}A) > 0.$$
(8)

Does not need vdCDT.

Theorem (Furstenberg-Sárközy)

For any m.p.s. (X, \mathcal{B}, μ, T) , and any $A \in \mathcal{B}$ with $\mu(A) > 0$, there exists $n \in \mathbb{N}$ for which

$$\mu(A\cap T^{-n^2}A)>0.$$
 (9)

Furstenberg's proof in [17, Proposition 1.3] uses a form of vdCDT since it uses the uniform distribution of $(n^2\alpha)_{n=1}^{\infty}$. See also [4, Theorem 2.1] for a proof using HvdCDT1 directly.

Applications of HvdCDTs 2/2

Theorem (Furstenberg, [17])

For any m.p.s. (X, \mathcal{B}, μ, T) , any $A \in \mathcal{B}$ with $\mu(A) > 0$, and any $\ell \in \mathbb{N}$, there exists $n \in \mathbb{N}$ for which

$$\mu\left(A\cap T^{-n}A\cap T^{-2n}A\cap\cdots\cap T^{-\ell n}A\right)>0.$$
 (10)

The proof presented in [9] uses HvdCT3 as Theorem 7.11, and the proof in [18] uses a variation.

Theorem (Bergelson and Leibman, [6])

For any m.p.s. $(X, \mathscr{B}, \mu, \{T_i\}_{i=1}^{\ell})$ with the T_i s commuting, any $A \in \mathscr{B}$ with $\mu(A) > 0$, and any $\{p_i(x)\}_{i=1}^{\ell} \subseteq x \mathbb{N}[x]$, there exists $n \in \mathbb{N}$ for which

$$\mu\left(A\cap T_1^{-p_1(n)}A\cap T_2^{-p_2(n)}A\cap\cdots\cap T_\ell^{-p_\ell(n)}A\right)>0.$$
 (11)

Uses an equivalent form of HvdCT3 as Lemma 2.4.

Sohail Farhangi

Some of the Ergodic Hierarchy of Mixing

Definition

which is the same as (⟨Uⁿ_Tf,g⟩)[∞]_{n=1} being Fourier coefficients of some h ∈ L¹([0,1], L), where L is the Lebesgue measure.

These definitions also apply to individual elements $f \in L^2_0(X, \mu)$.

The Symmetric Ergodic Hierarchy of Mixing

Theorem

Let
$$\mathcal{X} = (X, \mathscr{B}, \mu, T)$$
 be a m.p.s. If for every $f \in L_0^2(X, \mu)$

 $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \langle U_T^n f, f \rangle = 0$, then \mathcal{X} is ergodic,
 $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} |\langle U_T^n f, f \rangle| = 0$, then \mathcal{X} is weakly mixing,
 $\lim_{n \to \infty} \langle U_T^n f, f \rangle = 0$, then \mathcal{X} is strongly mixing,
 \mathcal{X} has Lebesgue spectrum if $(/U_T^n f, f)^\infty$ are the Fourier

Solution 2: A state of the sector of the

This theorem also applies to individual elements $f \in L^2_0(X, \mu)$.

Dual notions to various levels of mixing

Definition

Let
$$\mathcal{X} = (X, \mathscr{B}, \mu, T)$$
 be a m.p.s. If $f \in L^2(X, \mu)$ satisfies

- $U_T f = f$, then f is invariant.
- ② $f \in L^2(X, K, \mu)$ where (X, K, μ, T) is the Kronecker factor of (X, \mathcal{B}, μ, T) , then *f* is compact.
- $f \in L^2(X, \mathscr{B}_P, \mu)$, where \mathscr{B}_p is the Parreau factor from [22, Theorem 11], then f is 'anti-mixing' (provisional term).
- If $(\langle U_T^n f, f \rangle)_{n=1}^{\infty}$ are the Fourier coefficients of a measure $\mu_{f,T}$ that is mutually singular with the Lebesgue measure then f has singular spectrum.
- T has singular spectrum if all f ∈ L²(X, μ) have singular spectrum, i.e., the maximal spectral type of T is singular.

Theorem

- For $f, g \in L^2_0(X, \mu)$, we have $\langle f, g \rangle = 0$ if
 - I f is invariant and g is ergodic.
 - If is compact and g is weakly mixing.
 - f is 'anti-mixing' and g is strongly mixing.
 - # f has singular spectrum and g has Lebesgue spectrum.

Table of Contents

Review

- Van der Corput's difference theorem and some applications
- Mixing properties

2 Mixing van der Corput difference theorems

- 3 Ergodic theorems for noncommuting operators
 - Background
 - New results from mixing vdCs

4 Examples of systems with singular spectrum

A weak mixing van der Corput difference theorem

Theorem (MvdCT3)

If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{H\to\infty}\frac{1}{H}\sum_{h=1}^{H}\limsup_{N\to\infty}\left|\frac{1}{N}\sum_{n=1}^{N}\langle x_{n+h}, x_{n}\rangle\right|=0,$$
 (12)

then $(x_n)_{n=1}^{\infty}$ is a nearly weakly mixing sequence. This means that for any other bounded sequence $(y_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ we morally (but not literally) have that

$$\lim_{H\to\infty}\frac{1}{H}\sum_{h=1}^{H}\left|\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\langle x_{n+h}, y_{n}\rangle\right|=0.$$
 (13)

Loosely speaking, this can be interpretted as a weak mixing in any ultrapower \mathcal{H} of \mathcal{H} with respect to a unitary operator induced by the left shift. Note that elements of \mathcal{H} are sequences in \mathcal{H} .

A strong mixing van der Corput difference theorem

Theorem (MvdCT2)

If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{h\to\infty}\limsup_{N\to\infty}\left|\frac{1}{N}\sum_{n=1}^{N}\langle x_{n+h}, x_n\rangle\right|=0,$$
 (14)

then $(x_n)_{n=1}^{\infty}$ is a nearly strongly mixing sequence. This means that for any other bounded sequence $(y_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ we morally (but not literally) have that

$$\lim_{h\to\infty}\left|\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\langle x_{n+h}, y_n\rangle\right|=0.$$
 (15)

Loosely speaking, this can be interpretted as a strong mixing in any ultrapower \mathscr{H} of \mathcal{H} with respect to a unitary operator induced by the left shift. Note that elements of \mathscr{H} are sequences in \mathcal{H} .

Theorem (MvdCT1)

If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying for all $h \in \mathbb{N}$

$$\sum_{h=1}^{\infty} \limsup_{N \to \infty} \left| \frac{1}{N} \sum_{n=1}^{N} \langle x_{n+h}, x_n \rangle \right|^2 < \infty,$$
 (16)

then $(x_n)_{n=1}^{\infty}$ is a spectrally Lebesgue sequence. In particular, if $\mathcal{H} = L^2(X, \mu)$ and $(y_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is spectrally singular, then we have $\lim_{N \to \infty} \left| \left| \frac{1}{N} \sum_{n=1}^N x_n y_n \right| \right| = 0.$ (#)

Upgrading the weak convergence from **#** to the strong convergence in **#** necessitates a new proof of the classical vdCDT. See [10, Chapter 2] for variations of MvdCT related to other levels of mixing, as well as uniform distribution. See also [26].

Sohail Farhangi

Table of Contents

Review

- Van der Corput's difference theorem and some applications
- Mixing properties

2 Mixing van der Corput difference theorems

- 3 Ergodic theorems for noncommuting operators
 - Background
 - New results from mixing vdCs

4 Examples of systems with singular spectrum

Theorem ([12, Corollary 1.7])

Let $a : \mathbb{R}_+ \to \mathbb{R}$ be a Hardy field function for which there exist some $\epsilon > 0$ and $d \in \mathbb{Z}_+$ satisfying

$$\lim_{t \to \infty} \frac{a(t)}{t^{d+\epsilon}} = \lim_{t \to \infty} \frac{t^{d+1}}{a(t)} = \infty. \quad (e.g. \ a(t) = t^{1.5})$$
(17)

Furthermore, let (X, \mathcal{B}, μ) be a probability space and $T, S : X \to X$ be measure preserving transformations. Suppose that the system (X, \mathcal{B}, μ, T) has zero entropy. Then (i) For every $f, g \in L^{\infty}(X, \mu)$ we have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}T^{n}f\cdot S^{\lfloor a(n)\rfloor}g=\mathbb{E}[f|\mathcal{I}_{T}]\cdot\mathbb{E}[g|\mathcal{I}_{S}],\qquad(18)$$

where the limit is taken in $L^2(X, \mu)$.

Theorem (Continued)

(ii) For every $A \in \mathscr{B}$ we have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\mu\left(A\cap T^{-n}A\cap S^{-\lfloor a(n)\rfloor}A\right)\geq \mu(A)^{3}.$$
 (19)

In [13] a similar theorem is proven for a(n) = p(n) with $p(x) \in \mathbb{Z}[x]$ of degree at least 2. The zero entropy assumption on T cannot be removed as seen by [18, Page 40] or [2, Example 7.1]. In [24] it was shown that every T with singular spectrum must also have zero entropy. Note that the Horocycle flow has zero entropy [19] and Lebesgue spectrum [23]

Theorem ([7, Theorem 1.2])

Let G be a finitely generated solvable group of exponential growth. For any partition $R \bigcup P = \mathbb{Z} \setminus \{0\}$, there exist an action $\{T_g\}_{g \in G}$ of G on a probability space (X, \mathcal{B}, μ) , $g_1, g_2 \in G$, and set $A \in \mathcal{B}$ with $\mu(A) > 0$ such that

$$\mu\left(T_{g_{1}^{n}}A\cap T_{g_{2}^{n}}A\right)=0 \quad \text{if } n\in R \text{ and}$$
$$\mu\left(T_{g_{1}^{n}}A\cap T_{g_{2}^{n}}A\right)\geq\frac{1}{6} \text{ if } n\in P.$$

Note that the group used in [2, Example 7.1] is non-solvable.

Theorem ([15, Lemma 4.1])

Let $a, b : \mathbb{N} \to \mathbb{Z} \setminus \{0\}$ be injective sequences and F be any subset of \mathbb{N} . Then there exist a probability space (X, \mathcal{B}, μ) , measure preserving automorphisms $T, S : X \to X$, both of them Bernoulli, and $A \in \mathcal{B}$, such that

$$\mu\left(T^{-a(n)}A\cap S^{-b(n)}A\right) = \begin{cases} 0 & \text{if } n \in F, \\ \frac{1}{4} & \text{if } n \notin F. \end{cases}$$
(20)

Let (X, \mathscr{B}, μ) be a probability space and let $T, S : X \to X$ be measure preserving automorphisms for which T has singular spectrum. Let $(k_n)_{n=1}^{\infty} \subseteq \mathbb{N}$ be a sequence for which $((k_{n+h} - k_n)\alpha)_{n=1}^{\infty}$ is uniformly distributed in the orbit closure of α for all $\alpha \in \mathbb{R}$ and $h \in \mathbb{N}$.

$$\textcircled{0}$$
 For any $f,g\in L^\infty(X,\mu)$ we have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}T^{n}f\cdot S^{k_{n}}g=\mathbb{E}\left[f|\mathcal{I}_{T}\right]\mathbb{E}[g|\mathcal{I}_{S}],\qquad(21)$$

with convergence taking place in $L^2(X, \mu)$.

Theorem (Continued)

(ii) If $A \in \mathscr{B}$ then

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\mu\left(A\cap T^{-n}A\cap S^{-k_n}A\right)\geq \mu(A)^3.$$
 (22)

(iii) If we only assume that $((k_{n+h} - k_n)\alpha)_{n=1}^{\infty}$ is uniformly distributed for all $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and $h \in \mathbb{N}$, then (i) and (ii) hold when S is totally ergodic.

Examples include $k_n = \lfloor a(n) \rfloor$ with a(n) being as in frame 19, $k_n = \lfloor n^2 \log^2(n) \rfloor$, and for part (*iii*) we may take $k_n = p(n)$ for $p(x) \in x\mathbb{Z}[x]$ with degree at least 2.

Sets of *K* but not K + 1 recurrence?

Theorem ([14, Theorem 1.4 and Corollary 4.4])

Let
$$k \ge 2$$
 be an integer and $\alpha \in \mathbb{R}$ be irrational. Let
 $R_k = \{n \in \mathbb{N} \mid n^k \alpha \in [\frac{1}{4}, \frac{3}{4}]\}.$
(i) If (X, \mathscr{B}, μ) is a probability space and
 $S_1, S_2, \dots, S_{k-1} : X \to X$ are commuting measure preserving
transformations, then for any $A \in \mathscr{B}$ with $\mu(A) > 0$, there
exists $n \in R_k$ for which

$$\mu\left(A\cap S_1^{-n}A\cap S_2^{-n}A\cap\cdots\cap S_{k-1}^{-n}A\right)>0.$$
 (23)

(ii) There exists a m.p.s. (X, \mathcal{B}, μ, T) and a set $A \in \mathcal{B}$ satisfying $\mu(A) > 0$ such that for all $n \in R_k$ we have

$$\mu\left(A\cap T^{-n}A\cap T^{-2n}A\cap\cdots\cap T^{-kn}A\right)=0.$$
 (24)

Let $k \ge 2$ be an integer and $\alpha \in \mathbb{R}$ be irrational. Let $R_k = \{n \in \mathbb{N} \mid n^k \alpha \in [\frac{1}{4}, \frac{3}{4}]\}$. Let (X, \mathscr{B}, μ) be a probability space and $S_1, S_2, \dots, S_{k-1} : X \to X$ commuting measure preserving automorphisms. Let $T : X \to X$ be an measure preserving automorphism with singular spectrum, and for which $\{T, S_1, S_2, \dots, S_{k-1}\}$ generate a nilpotent group. For any $A \in \mathscr{B}$ with $\mu(A) > 0$, there exists $n \in R$ for which

$$u\left(A\cap T^{-n}A\cap S_1^{-n}A\cap S_2^{-n}A\cap\cdots\cap S_{k-1}^{-n}A\right)>0.$$
 (25)

Since the system $(\mathbb{T}^2, \mathscr{B}^2, \mathcal{L}^2, T)$ with $T(x, y) = (x + \alpha, y + x)$ can be used in item (ii) of the last slide when k = 2, the current theorem does not hold for a general T with 0 entropy. Also note that the maximal spectral type of T is $\mathcal{L} + \delta_{\alpha}$.

Sohail Farhangi

Let (X, \mathcal{B}, μ) be a probability space and $T, S : X \to X$ be measure preserving automorphisms. Suppose that T has singular spectrum and S is totally ergodic. Let $p_1, \dots, p_K \in \mathbb{Q}[x]$ be integer polynomials for which $deg(p_1) \ge 2$ and $deg(p_i) \ge 2 + deg(p_{i-1})$. For any $f, g_1, \dots, g_K \in L^{\infty}(X, \mu)$, we have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}T^{n}f\prod_{i=1}^{K}S^{p_{i}(n)}g_{i}=\mathbb{E}[f|\mathcal{I}_{T}]\prod_{i=1}^{K}\int_{X}g_{i}d\mu,\qquad(26)$$

with convergence taking place in $L^2(X, \mu)$.

Let (X, \mathscr{B}, μ) be a probability space and $T, R, S : X \to X$ be measure preserving automorphisms. Suppose that T has singular spectrum, R and S commute, and S is weakly mixing. Let $\ell \in \mathbb{N}$ and let $p_1, \dots, p_\ell \in \mathbb{Q}[x]$ be pairwise essentially distinct integer polynomials, each having degree at least 2. For any $f, h, g_1, \dots, g_\ell \in L^{\infty}(X, \mu)$ satisfying $\int_X g_j d\mu = 0$ for some $1 \leq j \leq \ell$, we have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}T^{n}f\cdot R^{n}h\cdot\prod_{j=1}^{\ell}S^{p_{j}(n)}g_{j}=0,$$
(27)

with convergence taking place in $L^2(X, \mu)$.

An example to justify our assumptions

Consider the m.p.s. $([0,1]^2, \mathscr{B}, \mathcal{L}^2, T, S)$ with $S(x,y) = (x + 2\alpha, y + x)$ for some $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, and T(x,y) = (x, y + x). We see that $([0,1]^2, \mathscr{B}, \mathcal{L}^2, S)$ and $([0,1]^2, \mathscr{B}, \mathcal{L}^2, T)$ are both zero entropy systems that are not weakly mixing, and the former is totally ergodic. Furthermore, T and S generate a 2-step nilpotent group. For $f_0(x,y) = e^{2\pi i (x-y)}, f_1(x,y) = e^{2\pi i y}$, and $f_2(x,y) = e^{-2\pi i x}$, we see that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^n f_0(x, y) S^n f_1(x, y) S^{\frac{1}{2}(n^2 - n)} f_2(x, y)$$
$$= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2\pi i \left((1 - n)x - y + y + nx + (n^2 - n)\alpha - x - (n^2 - n)\alpha \right)} = 1 \neq 0.$$

Table of Contents

Review

- Van der Corput's difference theorem and some applications
- Mixing properties
- 2 Mixing van der Corput difference theorems
- 3 Ergodic theorems for noncommuting operators
 - Background
 - New results from mixing vdCs

4 Examples of systems with singular spectrum

Examples of systems with singular spectrum

In [5, Proposition 2.9] it is shown that if (X, \mathcal{B}, μ) is a standard probability space, and Aut(X, \mathscr{B}, μ) is endowed with the strong operator topology, then the set of transformations that are weakly mixing and rigid is a generic set. Since any rigid automorphism has singular spectrum, we see that the set of singular automorphisms is generic. Now let $\mathcal{S} \subseteq \operatorname{Aut}(X, \mathcal{B}, \mu)$ denote the collection of strongly mixing transformation, and note that S is a meager set since an automorphism cannot simultaneously be rigid and strongly mixing. Since \mathcal{S} is not a complete metric space with respect to the topology induced by the strong operator topology, a new topology was introduced in [25], with respect to which S is a complete metric space. It is shown in the Corollary to Theorem 7 of [25] that a generic $T \in S$ has singular spectrum, and such a T is mixing of all orders due a well known result of Host [20]. See [11] and [21] for concrete examples of $T \in S$ that have singular spectrum. See also [1], [8], and [16].

[1] C. Aistleitner and M. Hofer.

On the maximal spectral type of a class of rank one transformations. *Dyn. Syst.*, 27(4):515–523, 2012.

- [2] D. Berend.Joint ergodicity and mixing.J. Analyse Math., 45:255–284, 1985.
- [3] V. Bergelson.
 Weakly mixing PET.
 Ergodic Theory Dynam. Systems, 7(3):337–349, 1987.

[4] V. Bergelson.

Ergodic Ramsey theory—an update.

In Ergodic theory of **Z**^d actions (Warwick, 1993–1994), volume 228 of London Math. Soc. Lecture Note Ser., pages 1–61. Cambridge Univ. Press, Cambridge, 1996.

[5] V. Bergelson, A. del Junco, M. Lemańczyk, and J. Rosenblatt.

Rigidity and non-recurrence along sequences. *Ergodic Theory Dynam. Systems*, 34(5):1464–1502, 2014.

[6] V. Bergelson and A. Leibman.

Polynomial extensions of van der Waerden's and Szemerédi's theorems.

J. Amer. Math. Soc., 9(3):725-753, 1996.

[7] V. Bergelson and A. Leibman.

Failure of the Roth theorem for solvable groups of exponential growth.

Ergod. Th. and Dynam. Sys., 24:45–53, 2004.

- [8] A. I. Bufetov and B. Solomyak.
 On substitution automorphisms with pure singular spectrum. *Math. Z.*, 301(2):1315–1331, 2022.
- [9] M. Einsiedler and T. Ward. Ergodic theory with a view towards number theory, volume 259 of Graduate Texts in Mathematics. Springer-Verlag London, Ltd., London, 2011.

S. Farhangi.
 Topics in ergodic theory and ramsey theory.
 PhD dissertation, the Ohio State University, 2022.

[11] B. Fayad.

Smooth mixing flows with purely singular spectra. *Duke Math. J.*, 132(2):371–391, 2006.

[12] N. Frantzikinakis.

Furstenberg systems of Hardy field sequences and applications.

J. Anal. Math., 147(1):333–372, 2022.

[13] N. Frantzikinakis and B. Host. Multiple recurrence and convergence without commutativity. arXiv:2111.01518v2 [math.DS], 2021.

Frame 35

[14] N. Frantzikinakis, E. Lesigne, and M. Wierdl.
 Sets of k-recurrence but not (k + 1)-recurrence.
 Ann. Inst. Fourier (Grenoble), 56(4):839–849, 2006.

[15] N. Frantzikinakis, E. Lesigne, and M. Wierdl. Random sequences and pointwise convergence of multiple ergodic averages.

Indiana Univ. Math. J., 61(2):585–617, 2012.

[16] K. Frączek and M. Lemańczyk. On mild mixing of special flows over irrational rotations under piecewise smooth functions.

Ergodic Theory Dynam. Systems, 26(3):719–738, 2006.

[17] H. Furstenberg.

Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions.

J. Analyse Math., 31:204–256, 1977.

 [18] H. Furstenberg. *Recurrence in ergodic theory and combinatorial number theory.* Princeton University Press, Princeton, N.J., 1981. M. B. Porter Lectures.

B. M. Gurevič.
 The entropy of horocycle flows.
 Dokl. Akad. Nauk SSSR, 136:768–770, 1961.

References VII

[20] B. Host.

Mixing of all orders and pairwise independent joinings of systems with singular spectrum.

Israel J. Math., 76(3):289–298, 1991.

 [21] I. Klemes and K. Reinhold.
 Rank one transformations with singular spectral type. *Israel J. Math.*, 98:1–14, 1997.

 [22] M. Lemańczyk.
 Spectral theory of dynamical systems.
 In Mathematics of complexity and dynamical systems. Vols. 1-3, pages 1618–1638. Springer, New York, 2012.

[23] O. S. Parasyuk.

Flows of horocycles on surfaces of constant negative curvature.

Uspehi Matem. Nauk (N.S.), 8(3(55)):125–126, 1953.

[24] V. A. Rohlin.

Lectures on the entropy theory of transformations with invariant measure.

Uspehi Mat. Nauk, 22(5 (137)):3–56, 1967.

[25] S. V. Tikhonov.

A complete metric on the set of mixing transformations. *Mat. Sb.*, 198(4):135–158, 2007.

[26] A. Tserunyan.

A Ramsey theorem on semigroups and a general van der Corput lemma.

J. Symb. Log., 81(2):718-741, 2016.

[27] J. G. van der Corput.

Diophantische Ungleichungen. I. Zur Gleichverteilung Modulo Eins.

Acta Math., 56(1):373-456, 1931.

Frame 40