Coding of geodesic flow and rigidity/flexibility of entropies for Fuchsian boundary maps

Adam Abrams

Joint with Svetlana Katok and Ilie Ugarcovici

5 November 2020
Politechnika Wrocławska

Fundamental polygon

For any genus $g \geq 2$ compact, closed, oriented surface S of constant negative curvature, $S=\Gamma \backslash \mathbb{D}$ for a Fuchsian group $\Gamma \subset \operatorname{Isom}^{+}(\mathbb{D})$.

- Adler and Flatto describe a fundamental $(8 g-4)$-gon \mathcal{F} such that the side-pairing transformations $T_{i}: \overline{\mathbb{D}} \rightarrow \overline{\mathbb{D}}$ generate Γ.

Side i extends to geodesic $P_{i} Q_{i+1}$.

Fundamental polygon

For any genus $g \geq 2$ compact, closed, oriented surface S of constant negative curvature, $S=\Gamma \backslash \mathbb{D}$ for a Fuchsian group $\Gamma \subset \operatorname{Isom}^{+}(\mathbb{D})$.

- Adler and Flatto describe a fundamental $(8 g-4)$-gon \mathcal{F} such that the side-pairing transformations $T_{i}: \overline{\mathbb{D}} \rightarrow \overline{\mathbb{D}}$ generate Γ.

Side i is glued to side $\sigma(i)$ by map T_{i}.
$\sigma(i)= \begin{cases}4 g-i & \text { odd } i, \\ 2-i & \text { even } i .\end{cases}$
Indices are all $\bmod 8 g-4$.

Fundamental polygon

For any genus $g \geq 2$ compact, closed, oriented surface S of constant negative curvature, $S=\Gamma \backslash \mathbb{D}$ for a Fuchsian group $\Gamma \subset \operatorname{Isom}^{+}(\mathbb{D})$.

- Adler and Flatto describe a fundamental $(8 g-4)$-gon \mathcal{F} such that the side-pairing transformations $T_{i}: \overline{\mathbb{D}} \rightarrow \overline{\mathbb{D}}$ generate Γ.

Lemma (Adler-Flatto)

The map T_{i} sends

$$
\begin{aligned}
& P_{i-1} \longrightarrow P_{\sigma(i)+1} \\
& P_{i} \longrightarrow Q_{\sigma(i)+1} \\
& Q_{i} \longrightarrow Q_{\sigma(i)+2} \\
& P_{i+1} \longrightarrow P_{\sigma(i)-1} \\
& Q_{i+1} \longrightarrow P_{\sigma(i)} \\
& Q_{i+2} \longrightarrow Q_{\sigma(i)}
\end{aligned}
$$

Boundary map

$$
\mathbb{S}=\partial \mathbb{D} \cong[-\pi, \pi)
$$

Graph: $y=\arg \left(\frac{a e^{i x}+\bar{c}}{c e^{i x}+\bar{a}}\right)$

Boundary map

$$
\mathbb{S}=\partial \mathbb{D} \cong[-\pi, \pi)
$$

Graph: $y=\arg \left(\frac{a e^{i x}+\bar{c}}{c e^{i x}+\bar{a}}\right)$

Boundary map

For each fundamental polygon \mathcal{F} with sides along geodesics $P_{i} Q_{i+1}$, define the "Bowen-Series boundary map" $f_{\bar{P}}$ on $\mathbb{S}=\partial \mathbb{D}$ by

$$
f_{\bar{P}}(x)=T_{i} x \quad \text { if } x \in\left[P_{i}, P_{i+1}\right)
$$

This map has a smooth invariant probability measure $\tilde{\mu}$.

Parameters

Original

Parameters

Change polygon

Parameters

Motivation

The "modular surface" is $M=\operatorname{PSL}(2, \mathbb{Z}) \backslash \mathcal{H}^{2}$.

Motivation

The "modular surface" is $M=\operatorname{PSL}(2, \mathbb{Z}) \backslash \mathcal{H}^{2}$.

- Geodesic flow on M is related to continued fractions.
- Different continued fraction algorithms use these generators on different intervals of \mathbb{R}.

Motivation

The "modular surface" is $M=\operatorname{PSL}(2, \mathbb{Z}) \backslash \mathcal{H}^{2}$.

classical continued fraction

Motivation

The "modular surface" is $M=\operatorname{PSL}(2, \mathbb{Z}) \backslash \mathcal{H}^{2}$.

Hurwitz continued fraction, 1880's

Motivation

The "modular surface" is $M=\operatorname{PSL}(2, \mathbb{Z}) \backslash \mathcal{H}^{2}$.

Japanese or α-continued fractions, 2000's

Motivation

The "modular surface" is $M=\operatorname{PSL}(2, \mathbb{Z}) \backslash \mathcal{H}^{2}$.

Katok-Ugarcovici (a, b)-continued fractions, 2010's

Classes of parameters

Fix the polygon \mathcal{F}. For any parameter choice

$$
\bar{A}=\left\{A_{1}, A_{2}, \ldots, A_{8 g-4}\right\}
$$

with $A_{i} \in\left[P_{i}, Q_{i}\right]$, we can define the boundary map

$$
f_{\bar{A}}(w)=T_{i} w \quad \text { if } x \in\left[A_{i}, A_{i+1}\right)
$$

Definition

- If each $A_{i} \in\left\{P_{i}, Q_{i}\right\}$, then \bar{A} is called extremal.
- If each $A_{i} \in\left(P_{i}, Q_{i}\right)$ and $f_{\bar{A}}\left(T_{i} A_{i}\right)=f_{\bar{A}}\left(T_{i-1} A_{i}\right)$ for all i, then the parameter choice \bar{A} has the short cycle property.

Adler-Flatto studied only $\bar{A}=\left\{P_{1}, \ldots, P_{8 g-4}\right\}$ and $\bar{A}=\left\{Q_{1}, \ldots, Q_{8 g-4}\right\}$.

Natural extension

The map $f_{\bar{A}}: \mathbb{S} \rightarrow \mathbb{S}$ is highly non-invertible.

[1] S. Katok, I. Ugarcovici. Structure of attractors for boundary maps associated to Fuchsian groups, Geometriae Dedicata 191 (2017), 171-198.
[2] A. Abrams. Extremal parameters and dual codes for Fuchsian boundary maps, Illinois Journal of Math.

Natural extension

The map $f_{\bar{A}}: \mathbb{S} \rightarrow \mathbb{S}$ is highly non-invertible.
The map $F_{\bar{A}}$ on $\mathbb{S} \times \mathbb{S} \backslash \Delta$, where $\Delta=\{(x, x): x \in \mathbb{S}\}$, given by

$$
F_{\bar{A}}(u, w)=\left(T_{i} u, T_{i} w\right) \quad \text { if } w \in\left[A_{i}, A_{i+1}\right)
$$

is also not invertible.
[1] S. Katok, I. Ugarcovici. Structure of attractors for boundary maps associated to Fuchsian groups, Geometriae Dedicata 191 (2017), 171-198.
[2] A. Abrams. Extremal parameters and dual codes for Fuchsian boundary maps, Illinois Journal of Math.

Natural extension

The map $f_{\bar{A}}: \mathbb{S} \rightarrow \mathbb{S}$ is highly non-invertible.
The map $F_{\bar{A}}$ on $\mathbb{S} \times \mathbb{S} \backslash \Delta$, where $\Delta=\{(x, x): x \in \mathbb{S}\}$, given by

$$
F_{\bar{A}}(u, w)=\left(T_{i} u, T_{i} w\right) \quad \text { if } w \in\left[A_{i}, A_{i+1}\right)
$$

is also not invertible.

Theorem

If \bar{A} has the short cycle property [1] or is extremal [2] then there exists $\Omega_{\bar{A}} \subset \mathbb{S} \times \mathbb{S}$ such that

- The restriction $\left.F_{\bar{A}}\right|_{\Omega_{\bar{A}}}$ is bijective.
- The set $\Omega_{\bar{A}}$ has a "finite rectangular structure" and is the global attractor of $F_{\bar{A}}$, that is, $\Omega_{\bar{A}}=\bigcap_{n=0}^{\infty} F_{\bar{A}}^{n}(\mathbb{S} \times \mathbb{S} \backslash \Delta)$.

The map $F_{\bar{A}}: \Omega_{\bar{A}} \rightarrow \Omega_{\bar{A}}$ is the natural extension of $f_{\bar{A}}$.

[^0]
Natural extension

$$
F_{\bar{P}}(u, w)=\left(T_{i} u, T_{i} w\right) \quad \text { if } w \in\left[P_{i}, P_{i+1}\right)
$$

This domain $\Omega_{\bar{P}}$ is called the "arithmetic set".

Natural extension

$$
F_{\bar{A}}(u, w)=\left(T_{i} u, T_{i} w\right) \quad \text { if } w \in\left[A_{i}, A_{i+1}\right)
$$

This domain $\Omega_{\bar{A}}$ is called the "arithmetic set".

Special flows

A special flow over $R: X \rightarrow X$ is vertical flow on the space

$$
\{(x, t): x \in X, 0 \leq t<H(x)\} / \sim
$$

where $H: X \rightarrow \mathbb{R}_{+}$and $(x, H(x)) \sim(R(x), 0)$.

A cross-section of a flow φ^{t} on M is a subset $C \subset M$ to which almost every orbit returns infinitely often. The flow φ^{t} is a special flow over $R: C \rightarrow C$ with $H(x)$ the "first return time" and $R(x)=\varphi^{H(x)}(x)$.

Special flows

We have two maps we can iterate:

- $f_{\bar{A}}$ on the circle \mathbb{S}.
- $F_{\bar{A}}$ on the domain $\Omega_{\bar{A}} \subset \mathbb{S} \times \mathbb{S}$.

The goal is to show that geodesic flow on $S=\Gamma \backslash \mathbb{D}$ is a special flow over $F_{\bar{A}}$ and then use this to produce results about $f_{\bar{A}}$.

- This requires constructing an "arithmetic cross-section" $C_{\bar{A}}$.

There is already a natural "geometric cross-section" for geodesic flow.

Geodesic flow

Geometric map

$$
F_{\mathrm{geo}}(u, w)=\left(T_{i} u, T_{i} w\right) \quad \text { if } u w \text { exits } \mathcal{F} \text { through side } i
$$

Domain $\Omega_{\text {geo }}=\{(u, w): u w$ intersects $\mathcal{F}\}$.
By construction, geo. flow is a special flow over $F_{\text {geo }}: \Omega_{\text {geo }} \rightarrow \Omega_{\text {geo }}$.

Arithmetic map

$$
F_{\bar{A}}(u, w)=\left(T_{i} u, T_{i} w\right) \quad \text { if } w \in\left[A_{i}, A_{i+1}\right)
$$

Structure of attractor

The corner points are
upper part: $\left(P_{i}, B_{i}\right)$ and lower part: $\left(Q_{i+1}, C_{i}\right)$,
where $B_{i}:=T_{\sigma(i-1)} A_{\sigma(i-1)}$ and $C_{i}:=T_{\sigma(i+1)} A_{\sigma(i+1)+1}$.

Structure of attractor

The corner points are
upper part: $\left(P_{i}, B_{i}\right)$ and lower part: $\left(Q_{i+1}, C_{i}\right)$,
where $B_{i}:=T_{\sigma(i-1)} A_{\sigma(i-1)}$ and $C_{i}:=T_{\sigma(i+1)} A_{\sigma(i+1)+1}$.

Structure of attractor

Structure of attractor

$$
\begin{array}{cc}
\text { upper corner } \mathcal{C}^{i} & \text { lower bulge } \mathcal{B}_{i} \\
\text { upper bulge } \mathcal{B}^{i} & \text { lower corner } \mathcal{C}_{i} \\
\text { overlap } \mathcal{O}=\Omega_{\text {geo }} \cap \Omega_{\bar{A}}
\end{array}
$$

Structure of attractor

Structure of attractor

Goal: construct

$$
\Phi: \Omega_{\text {geo }} \rightarrow \Omega_{\bar{A}}
$$

such that

$$
\Phi \circ F_{\text {geo }}=F_{\bar{A}} \circ \Phi
$$

Notation

- $\sigma(i)= \begin{cases}4 g-i & \text { if } i \text { is odd } \\ 2-i & \text { if } i \text { is even }\end{cases}$ pairs sides.

Notation

- $\sigma(i)=\left\{\begin{array}{ll}4 g-i & \text { if } i \text { is odd } \\ 2-i & \text { if } i \text { is even }\end{array}\right.$ pairs sides.
- New permutation

$$
\tau(i):=i+(4 g-2)
$$

P_{i} and $P_{\tau(i)}$ are antipodal. Q_{i} and $Q_{\tau(i)}$ are antipodal.

Notation

- $\sigma(i)=\left\{\begin{array}{ll}4 g-i & \text { if } i \text { is odd } \\ 2-i & \text { if } i \text { is even }\end{array}\right.$ pairs sides.
- New permutation

$$
\tau(i):=i+(4 g-2)
$$

P_{i} and $P_{\tau(i)}$ are antipodal. Q_{i} and $Q_{\tau(i)}$ are antipodal.

- New map

$$
U_{i}:=T_{\sigma(i)} T_{\tau(i-1)}=T_{\sigma(i-1)} T_{\tau(i)} .
$$

Notation

- $\sigma(i)=\left\{\begin{array}{ll}4 g-i & \text { if } i \text { is odd } \\ 2-i & \text { if } i \text { is even }\end{array}\right.$ pairs sides.
- New permutation

$$
\tau(i):=i+(4 g-2)
$$

P_{i} and $P_{\tau(i)}$ are antipodal. Q_{i} and $Q_{\tau(i)}$ are antipodal.

- New map

$$
U_{i}:=T_{\sigma(i)} T_{\tau(i-1)}=T_{\sigma(i-1)} T_{\tau(i)} .
$$

Lemma

- $\sigma(i-1)=\tau \sigma(i)+1$.
- $U_{i}^{-1}=U_{\tau(i)}$.
- $U_{i} \mathcal{F}$ touches \mathcal{F} at vertex i (where sides i and $i-1$ meet).

Circle maps

The map

$$
U_{i}=T_{\sigma(i)} T_{\tau(i-1)}=T_{\sigma(i-1)} T_{\tau(i)}
$$

sends \mathcal{F} to the "corner image" $U_{i} \mathcal{F}$.

Arithmetic vs. geometric

Proposition (A.-Katok)

Let \bar{A} have the short cycle property, and let $\mathcal{B}_{i}, \mathcal{C}_{i}, \mathcal{B}^{i}, \mathcal{C}^{i}$ be the bulges and corners shown previously. The map Φ with domain $\Omega_{\text {geo }}$ given by

$$
\Phi= \begin{cases}\mathrm{Id} & \text { on } \mathcal{O} \\ U_{\tau(i)+1} & \text { on } \mathcal{B}_{i} \\ U_{\tau(i)} & \text { on } \mathcal{B}^{i}\end{cases}
$$

is a bijection from $\Omega_{\text {geo }}$ to $\Omega_{\bar{A}}$.
Specifically, $\Phi\left(\mathcal{B}_{i}\right)=\mathcal{C}^{\tau(i)+1}$ and $\Phi\left(\mathcal{B}^{i}\right)=\mathcal{C}_{\tau(i)-1}$.

Arithmetic vs. geometric

Arithmetic vs. geometric

and

$$
\begin{aligned}
U_{\tau(i)+1} C_{i} & =\left(T_{\sigma(i+1)+1} T_{i+1}\right)\left(T_{\sigma(i+1)} A_{\tau \sigma(i)}\right) \\
& =T_{\sigma(\tau(i))} A_{\sigma(\tau(i))} \\
& =B_{\tau(i)+1}
\end{aligned}
$$

Conjugacy

Theorem (A.-Katok)

Let \bar{A} satisfy the short cycle property. Then $\Phi: \Omega_{\text {geo }} \rightarrow \Omega_{\bar{A}}$ is a conjugacy between $F_{\text {geo }}$ and $F_{\bar{A}}$. That is, the following diagram commutes:

[3] A. Abrams, S. Katok. Adler and Flatto revisited: cross-sections for geodesic flow on compact surfaces of constant negative curvature, Studia Mathematica 246 (2019), 167-202.

Conjugacy

Theorem (A.-Katok)

Let \bar{A} satisfy the short cycle property. Then $\Phi: \Omega_{\text {geo }} \rightarrow \Omega_{\bar{A}}$ is a conjugacy between $F_{\text {geo }}$ and $F_{\bar{A}}$. That is, the following diagram commutes:

[3] A. Abrams, S. Katok. Adler and Flatto revisited: cross-sections for geodesic flow on compact surfaces of constant negative curvature, Studia Mathematica 246 (2019), 167-202.

Conjugacy

Conjugacy

Conjugacy

Conjugacy

Cross-section

Because $\Phi: \Omega_{\text {geo }} \rightarrow \Omega_{\bar{A}}$ bijectively, we know that if $(u, w) \in \Omega_{\bar{A}}$ then the geodesic $\gamma=u w$ intersects \mathcal{F} or intersects $U_{j} \mathcal{F}$, where

$$
j= \begin{cases}i & \text { if }(u, w) \in \mathcal{C}^{i} \\ i+1 & \text { if }(u, w) \in \mathcal{C}_{i}\end{cases}
$$

Definitions

- A geodesic $\gamma=u w$ is called reduced if $(u, w) \in \Omega_{\bar{A}}$.
- The cross-section point of a reduced geodesic γ is the point where it enters \mathcal{F} or $U_{j} \mathcal{F}$.
- The arithmetic cross-section is

$$
C_{\bar{A}}=\left\{\begin{array}{l|l}
\pi(z, \zeta) & \begin{array}{c}
z \text { is the cross-section point } \\
\text { of a reduced geodesic } \gamma \\
\zeta \text { is tangent to } \gamma \text { at } z
\end{array}
\end{array}\right\}
$$

where $\pi: T^{1} \mathbb{D} \rightarrow T^{1} S$ is projection.

Arithmetic coding

Given any $w \in \mathbb{S}$, we can build a sequence $n_{0}, n_{1}, n_{2}, \ldots$ by recording which interval each $w_{k}=f_{\bar{A}}^{k}(w)$ is in.

- This gives only a one-sided sequence, but geodesic flow can move forwards or backwards.
- Recall that $f_{\bar{A}}$ is not invertible but $\left.F_{\bar{A}}\right|_{\Omega_{\bar{A}}}$ is.

Arithmetic coding

Let $\gamma=u w$ be a reduced geodesic on \mathbb{D}, and denote

$$
\left(u_{k}, w_{k}\right)=F_{\bar{A}}^{k}(u, w) \quad \text { for all } k \in \mathbb{Z}
$$

Definition

The arithmetic code of $\gamma=u w$ is the sequence

$$
[\gamma]_{\bar{A}}=\left(\ldots, n_{-2}, n_{-1}, n_{0}, n_{1}, n_{2}, \ldots\right)
$$

where $n_{k}=\sigma(i)$ for the index i such that $w_{k} \in\left[A_{i}, A_{i+1}\right)$.
Theorem (A.-Katok)
Let $\bar{\gamma}$ be the projection of γ to $S=\Gamma \backslash \mathbb{D}$. Then the first return of the flow along $\bar{\gamma}$ to the cross-section $C_{\bar{A}}$ corresponds to a left shift of the coding sequence $[\gamma]_{\bar{A}}$.

Coding example

Coding example

A periodic code $\left(\ldots, n_{k}, n_{0}, n_{1}, \ldots, n_{k-1}, n_{k}, n_{0}, n_{1}, \ldots\right)$ is written as just $\left(n_{0}, \ldots, n_{k}\right)$.

- Let γ be the axis of $T_{5} T_{4} T_{7} T_{6}$.
- Its geometric code is

$$
[\gamma]_{\mathrm{geo}}=(\sigma(3), \sigma(10), \sigma(1), \sigma(8))=(5,4,7,6) .
$$

- Its arithmetic code is

$$
[\gamma]_{\bar{A}}=(\sigma(3), \sigma(10), \sigma(12), \sigma(1))=(5,4,2,7) .
$$

Coding example

A periodic code $\left(\ldots, n_{k}, n_{0}, n_{1}, \ldots, n_{k-1}, n_{k}, n_{0}, n_{1}, \ldots\right)$ is written as just $\left(n_{0}, \ldots, n_{k}\right)$.

- Let γ be the axis of $T_{5} T_{4} T_{7} T_{6}$.
- Its geometric code is

$$
[\gamma]_{\mathrm{geo}}=(\sigma(3), \sigma(10), \sigma(1), \sigma(8))=(5,4,7,6) .
$$

- Its arithmetic code is

$$
[\gamma]_{\bar{A}}=(\sigma(3), \sigma(10), \sigma(12), \sigma(1))=(5,4,2,7) .
$$

- For the axis of $T_{2} T_{8} T_{5}$,

$$
[\gamma]_{\mathrm{geo}}=[\gamma]_{\bar{A}}=(\sigma(12), \sigma(6), \sigma(3))=(2,8,5) .
$$

Coding example

Dual codes

Recall the coding sequence of $\gamma=u w$ is

$$
[\gamma]_{\bar{A}}=\left(\ldots, n_{-2}, n_{-1}, n_{0}, n_{1}, n_{2}, \ldots\right)
$$

where

$$
n_{k}=\sigma(i) \quad \text { if } w_{k} \in\left[A_{i}, A_{i+1}\right),
$$

and $\left(u_{k}, w_{k}\right)=F_{\bar{A}}^{k}(u, w)$.

Dual codes

Recall the coding sequence of $\gamma=u w$ is

$$
[\gamma]_{\bar{A}}=\left(\ldots, n_{-2}, n_{-1}, n_{0}, n_{1}, n_{2}, \ldots\right)
$$

where

$$
n_{k}=\sigma(i) \quad \text { if } w_{k} \in\left[A_{i}, A_{i+1}\right),
$$

and $\left(u_{k}, w_{k}\right)=F_{\bar{A}}^{k}(u, w)$.

- Since $f_{\bar{A}}(x)=F_{\bar{A}}(\cdot, x)$, we also have $w_{k}=f_{\bar{A}}^{k}(w)$.
- The "future" $n_{0}, n_{1}, n_{2}, \ldots$, depends only on w and can be calculated using the one-dimensional map $f_{\bar{A}}$.
- But the "past" $(k<0)$ generally depends on both u and w.

Dual codes

Definition

Let $\phi(x, y)=(y, x)$. We say \bar{A} and \bar{B} are dual if $\phi\left(\Omega_{\bar{A}}\right)=\Omega_{\bar{B}}$ and $\phi\left(F_{\bar{A}}^{-1}(p)\right)=F_{\bar{B}}(\phi(p))$ for all $p=(u, w) \in \Omega_{\bar{A}}$ with $u \notin \bar{B}$.

$$
\begin{array}{ll}
\Omega_{\bar{A}} \xrightarrow{F_{\bar{A}}^{-1}} \Omega_{\bar{A}} \\
\phi \downarrow^{\downarrow} & \downarrow_{\bar{B}} \\
\Omega_{\bar{B}} & \Omega_{\bar{B}}
\end{array}
$$

Dual codes

Definition

Let $\phi(x, y)=(y, x)$. We say \bar{A} and \bar{B} are dual if $\phi\left(\Omega_{\bar{A}}\right)=\Omega_{\bar{B}}$ and $\phi\left(F_{\bar{A}}^{-1}(p)\right)=F_{\bar{B}}(\phi(p))$ for all $p=(u, w) \in \Omega_{\bar{A}}$ with $u \notin \bar{B}$.

Theorem (A.-Katok)
If \bar{A} and \bar{B} are dual and $(u, w) \in \Omega_{\bar{A}}$, then the arithmetic code

$$
[\gamma]_{\bar{A}}=\left(\ldots, n_{-2}, n_{-1}, n_{0}, n_{1}, n_{2}, \ldots\right)
$$

of the geodesic $\gamma=u w$ satisfies

- for $k \geq 0, n_{k}=\sigma(i)$ such that $f_{\bar{A}}^{k}(w) \in\left[A_{i}, A_{i+1}\right)$;
- for $k<0, n_{k}=i$ such that $f_{\bar{B}}^{-k+1}(u) \in\left[B_{i}, B_{i+1}\right)$.

Dual codes

Definition

Let $\phi(x, y)=(y, x)$. We say \bar{A} and \bar{B} are dual if $\phi\left(\Omega_{\bar{A}}\right)=\Omega_{\bar{B}}$ and $\phi\left(F_{\bar{A}}^{-1}(p)\right)=F_{\bar{B}}(\phi(p))$ for all $p=(u, w) \in \Omega_{\bar{A}}$ with $u \notin \bar{B}$.

Theorem (A.-Katok)
If \bar{A} and \bar{B} are dual and $(u, w) \in \Omega_{\bar{A}}$, then the arithmetic code

$$
[\gamma]_{\bar{A}}=\left(\ldots, n_{-2}, n_{-1}, n_{0}, n_{1}, n_{2}, \ldots\right)
$$

of the geodesic $\gamma=u w$ satisfies

- for $k \geq 0, n_{k}=\sigma(i)$ such that $f_{\bar{A}}^{k}(w) \in\left[A_{i}, A_{i+1}\right)$;
- for $k<0, n_{k}=i$ such that $f_{\bar{B}}^{-k+1}(u) \in\left[B_{i}, B_{i+1}\right)$.

Proposition

There do not exist dual \bar{A} and \bar{B} with the short cycle property.

Dual example

Extremal parameters

Recall that a parameter choice $\bar{A}=\left\{A_{1}, \ldots, A_{8 g-4}\right\}$ is called extremal if each $A_{i} \in\left\{P_{i}, Q_{i}\right\}$.

Theorem (A.)
For each extremal parameter choice \bar{A} there exists a parameter choice $\bar{B}=\left\{B_{1}, \ldots, B_{8 g-4}\right\}$ such that \bar{A} and \bar{B} are dual.

Previous results described the structure of $\Omega_{\bar{A}}$ only when \bar{A} has short cycles or the specific cases $\bar{A}=\bar{P}$ and $\bar{A}=\bar{Q}$.

- Before discussing the dual, we first need to describe $\Omega_{\bar{A}}$ for extremal \bar{A}.
- The parameters \bar{B} might not be extremal or have short cycles, so the domain $\Omega_{\bar{B}}$ of $F_{\bar{B}}$ also does not follow from previous results.
[2] A. Abrams. Extremal parameters and dual codes for Fuchsian boundary maps, Illinois Journal of Math.

Extremal parameters

Recall that a parameter choice $\bar{A}=\left\{A_{1}, \ldots, A_{8 g-4}\right\}$ is called extremal if each $A_{i} \in\left\{P_{i}, Q_{i}\right\}$.

Theorem (A.)
For each extremal parameter choice \bar{A} there exists a parameter choice $\bar{B}=\left\{B_{1}, \ldots, B_{8 g-4}\right\}$ such that \bar{A} and \bar{B} are dual.

Previous results described the structure of $\Omega_{\bar{A}}$ only when \bar{A} has short cycles or the specific cases $\bar{A}=\bar{P}$ and $\bar{A}=\bar{Q}$.

- Before discussing the dual, we first need to describe $\Omega_{\bar{A}}$ for extremal \bar{A}.
- The parameters \bar{B} might not be extremal or have short cycles, so the domain $\Omega_{\bar{B}}$ of $F_{\bar{B}}$ also does not follow from previous results.
[2] A. Abrams. Extremal parameters and dual codes for Fuchsian boundary maps, Illinois Journal of Math.

Extremal parameters

Describing the domain

Describing the domain

Suppose a set of the form

$$
\Lambda=\bigcup_{i=1}^{8 g-4}\left[H_{i+1}, G_{i-2}\right] \times\left[P_{i}, Q_{i}\right] \cup\left[H_{i+1}, G_{i-1}\right] \times\left[Q_{i}, P_{i+1}\right]
$$

satisfies $F_{\bar{A}}(\Lambda)=\Lambda$ for some extremal \bar{A}. What conditions does this imply for $\left\{G_{i}\right\}$ and $\left\{H_{i}\right\}$?

Describing the domain

Suppose a set of the form

$$
\Lambda=\bigcup_{i=1}^{8 g-4}\left[H_{i+1}, G_{i-2}\right] \times\left[P_{i}, Q_{i}\right] \cup\left[H_{i+1}, G_{i-1}\right] \times\left[Q_{i}, P_{i+1}\right]
$$

satisfies $F_{\bar{A}}(\Lambda)=\Lambda$ for some extremal \bar{A}. What conditions does this imply for $\left\{G_{i}\right\}$ and $\left\{H_{i}\right\}$?

Describing the domain

Suppose a set of the form

$$
\Lambda=\bigcup_{i=1}^{8 g-4}\left[H_{i+1}, G_{i-2}\right] \times\left[P_{i}, Q_{i}\right] \cup\left[H_{i+1}, G_{i-1}\right] \times\left[Q_{i}, P_{i+1}\right]
$$

satisfies $F_{\bar{A}}(\Lambda)=\Lambda$ for some extremal \bar{A}. What conditions does this imply for $\left\{G_{i}\right\}$ and $\left\{H_{i}\right\}$?

- Answer:
- If $A_{i}=P_{i}$, then $G_{\sigma(i)}=T_{i} G_{i-2}$.
- If $A_{i}=Q_{i}$, then $H_{\tau \sigma(i)+1}=T_{i-1} H_{i+1}$.

Describing the domain

Suppose a set of the form

$$
\Lambda=\bigcup_{i=1}^{8 g-4}\left[H_{i+1}, G_{i-2}\right] \times\left[P_{i}, Q_{i}\right] \cup\left[H_{i+1}, G_{i-1}\right] \times\left[Q_{i}, P_{i+1}\right]
$$

satisfies $F_{\bar{A}}(\Lambda)=\Lambda$ for some extremal \bar{A}. What conditions does this imply for $\left\{G_{i}\right\}$ and $\left\{H_{i}\right\}$?

- Answer:
- If $A_{i}=P_{i}$, then $G_{\sigma(i)}=T_{i} G_{i-2}$.
- If $A_{i}=Q_{i}$, then $H_{\tau \sigma(i)+1}=T_{i-1} H_{i+1}$.
- In fact, we can set $H_{i}=U_{i} G_{\tau(i)-1}$ and replace the second condition with
- If $A_{i}=Q_{i}$, then $G_{\sigma(i)}=T_{\tau(i)+1} G_{\tau(i)}$.

Describing the domain

Suppose a set of the form

$$
\Lambda=\bigcup_{i=1}^{8 g-4}\left[H_{i+1}, G_{i-2}\right] \times\left[P_{i}, Q_{i}\right] \cup\left[H_{i+1}, G_{i-1}\right] \times\left[Q_{i}, P_{i+1}\right]
$$

satisfies $F_{\bar{A}}(\Lambda)=\Lambda$ for some extremal \bar{A}. What conditions does this imply for $\left\{G_{i}\right\}$ and $\left\{H_{i}\right\}$?

- Answer:
- If $A_{i}=P_{i}$, then $G_{\sigma(i)}=T_{i} G_{i-2}$.
- If $A_{i}=Q_{i}$, then $H_{\tau \sigma(i)+1}=T_{i-1} H_{i+1}$.
- In fact, we can set $H_{i}=U_{i} G_{\tau(i)-1}$ and replace the second condition with
- If $A_{i}=Q_{i}$, then $G_{\sigma(i)}=T_{\tau(i)+1} G_{\tau(i)}$.

System of equations

Proposition (A.)

For any $A_{1}, \ldots, A_{8 g-4}$ with $A_{i} \in\left\{P_{i}, Q_{i}\right\}$, there exist unique values
$G_{1}, \ldots, G_{8 g-4}$ such that for all $1 \leq i \leq 8 g-4$

- $G_{i} \in\left[P_{i}, P_{i+1}\right]$,
- $G_{\sigma(i)}=T_{i} G_{i-2}$ if $A_{i}=P_{i}$,
- $G_{\sigma(i)}=T_{\tau(i)+1} G_{\tau(i)}$ if $A_{i}=Q_{i}$.

System of equations

Goal: $G_{i} \in\left[P_{i}, P_{i+1}\right]$ and $G_{\sigma(i)}= \begin{cases}T_{i} G_{i-2} & \text { if } A_{i}=P_{i} \\ T_{\tau(i)+1} G_{\tau(i)} & \text { if } A_{i}=Q_{i}\end{cases}$
Example: $\bar{A}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, Q_{5}, P_{6}, Q_{7}, Q_{8}, P_{9}, P_{10}, Q_{11}, Q_{12}\right\}$.
G_{1}
G_{2}
G_{6}
G_{3}
G_{5}
G_{10}
G_{7}
G_{11}
G_{9}
G_{4}
G_{8}
G_{12}

System of equations

Goal: $G_{i} \in\left[P_{i}, P_{i+1}\right]$ and $G_{\sigma(i)}= \begin{cases}T_{i} G_{i-2} & \text { if } A_{i}=P_{i} \\ T_{\tau(i)+1} G_{\tau(i)} & \text { if } A_{i}=Q_{i}\end{cases}$
Example: $\bar{A}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, Q_{5}, P_{6}, Q_{7}, Q_{8}, P_{9}, P_{10}, Q_{11}, Q_{12}\right\}$.
G_{1}
G_{2}
G_{6}
G_{3}
G_{5}
G_{10}
G_{7}
G_{11}
G_{9}
G_{4}
G_{8}
G_{12}

System of equations

Goal: $G_{i} \in\left[P_{i}, P_{i+1}\right]$ and $G_{\sigma(i)}= \begin{cases}T_{i} G_{i-2} & \text { if } A_{i}=P_{i} \\ T_{\tau(i)+1} G_{\tau(i)} & \text { if } A_{i}=Q_{i}\end{cases}$
Example: $\bar{A}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, Q_{5}, P_{6}, Q_{7}, Q_{8}, P_{9}, P_{10}, Q_{11}, Q_{12}\right\}$.
G_{1}
G_{2}
G_{6}
G_{3}

G_{10}
$G_{7} \underset{T_{1}}{ } G_{11}$
G_{9}
G_{4}
G_{8}
G_{12}

System of equations

Goal: $G_{i} \in\left[P_{i}, P_{i+1}\right]$ and $G_{\sigma(i)}= \begin{cases}T_{i} G_{i-2} & \text { if } A_{i}=P_{i} \\ T_{\tau(i)+1} G_{\tau(i)} & \text { if } A_{i}=Q_{i}\end{cases}$
Example: $\bar{A}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, Q_{5}, P_{6}, Q_{7}, Q_{8}, P_{9}, P_{10}, Q_{11}, Q_{12}\right\}$.
$T_{2} \subset G_{1}$
G_{2}
G_{6}
G_{3}
G_{5}
G_{10}
$G_{7}^{\underset{T_{1}}{ }} G_{11}$
G_{9}
G_{4}
G_{8}
G_{12}

System of equations

Goal: $G_{i} \in\left[P_{i}, P_{i+1}\right]$ and $G_{\sigma(i)}= \begin{cases}T_{i} G_{i-2} & \text { if } A_{i}=P_{i} \\ T_{\tau(i)+1} G_{\tau(i)} & \text { if } A_{i}=Q_{i}\end{cases}$
Example: $\bar{A}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, Q_{5}, P_{6}, Q_{7}, Q_{8}, P_{9}, P_{10}, Q_{11}, Q_{12}\right\}$.

$$
\begin{array}{cccc}
T_{2} \subset G_{1}=P_{1} & G_{2} & G_{6} & G_{3} \\
G_{5} & G_{10} & G_{7} & G_{11} \\
G_{9} & G_{4} & G_{8} & G_{12}
\end{array}
$$

System of equations

Goal: $G_{i} \in\left[P_{i}, P_{i+1}\right]$ and $G_{\sigma(i)}= \begin{cases}T_{i} G_{i-2} & \text { if } A_{i}=P_{i} \\ T_{\tau(i)+1} G_{\tau(i)} & \text { if } A_{i}=Q_{i}\end{cases}$
Example: $\bar{A}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, Q_{5}, P_{6}, Q_{7}, Q_{8}, P_{9}, P_{10}, Q_{11}, Q_{12}\right\}$.

$$
\begin{array}{ccccc}
T_{2} \subset G_{1}=P_{1} & G_{2} & G_{6} & G_{3} \\
\downarrow_{3} P_{1}=G_{5} & & & \\
& G_{10} & G_{7} & \tag{10}\\
T_{T_{1}} & & \\
G_{9} & G_{4} & G_{8} & G_{12}
\end{array}
$$

System of equations

Goal: $G_{i} \in\left[P_{i}, P_{i+1}\right]$ and $G_{\sigma(i)}= \begin{cases}T_{i} G_{i-2} & \text { if } A_{i}=P_{i} \\ T_{\tau(i)+1} G_{\tau(i)} & \text { if } A_{i}=Q_{i}\end{cases}$
Example: $\bar{A}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, Q_{5}, P_{6}, Q_{7}, Q_{8}, P_{9}, P_{10}, Q_{11}, Q_{12}\right\}$.

$$
\begin{array}{cccc}
T_{2} \subset G_{1}=P_{1} & G_{2} & G_{6} & G_{3} \\
T_{3} P_{1}=G_{5} & & & \\
T_{10} & & G_{7} \underset{T_{1}}{\sim} \\
G_{9} & G_{4} & G_{8} & G_{11}
\end{array}
$$

System of equations

Goal: $G_{i} \in\left[P_{i}, P_{i+1}\right]$ and $G_{\sigma(i)}= \begin{cases}T_{i} G_{i-2} & \text { if } A_{i}=P_{i} \\ T_{\tau(i)+1} G_{\tau(i)} & \text { if } A_{i}=Q_{i}\end{cases}$
Example: $\bar{A}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, Q_{5}, P_{6}, Q_{7}, Q_{8}, P_{9}, P_{10}, Q_{11}, Q_{12}\right\}$.

$$
\begin{aligned}
& \begin{array}{cccc}
T_{2} \subset G_{1}=P_{1} & G_{2} & G_{6} & G_{3} \\
{ }^{\downarrow_{3}} P_{1}=G_{5} & & & \\
T_{T_{1}}
\end{array} G_{10} \quad P_{8}=G_{7} G_{11}=P_{12} \\
& G_{9} \\
& G_{4} \\
& G_{8} \\
& G_{12}
\end{aligned}
$$

System of equations

Goal: $G_{i} \in\left[P_{i}, P_{i+1}\right]$ and $G_{\sigma(i)}= \begin{cases}T_{i} G_{i-2} & \text { if } A_{i}=P_{i} \\ T_{\tau(i)+1} G_{\tau(i)} & \text { if } A_{i}=Q_{i}\end{cases}$
Example: $\bar{A}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, Q_{5}, P_{6}, Q_{7}, Q_{8}, P_{9}, P_{10}, Q_{11}, Q_{12}\right\}$.

System of equations

Example: $g=3$ and $\bar{A}=\left\{P_{1}, Q_{2}, P_{3}, P_{4}, Q_{5}, P_{6}, P_{7}\right.$, $\left.Q_{8}, Q_{9}, P_{10}, Q_{11}, Q_{12}, Q_{13}, Q_{14}, Q_{15}, P_{16}, P_{17}, Q_{18}, Q_{19}, Q_{20}\right\}$.

$$
\begin{aligned}
& T_{2} \subset G_{1} \xrightarrow{T_{3}} G_{9} \xrightarrow{T_{10}} G_{13} \quad G_{17} \stackrel{T_{6}}{\longleftarrow} G_{5} \supset T_{7} \\
& G_{3} \underset{T_{20}}{\stackrel{T_{4}}{\longleftrightarrow}} G_{19} \xrightarrow{T_{1}} G_{11} \quad G_{7} \stackrel{T_{16}}{\longleftrightarrow} G_{15} \longmapsto T_{17} \\
& G_{6} \stackrel{T_{16}}{\longleftrightarrow} G_{14} \stackrel{T_{19}}{\longleftrightarrow} G_{18} \stackrel{T_{4}}{\leftrightarrows} G_{2} \stackrel{T_{3}}{\stackrel{T_{11}}{\longleftrightarrow}} G_{10} \\
& G_{16} \stackrel{T_{6}}{\longleftrightarrow} G_{4} \stackrel{T_{9}}{T_{5}} G_{8} \xrightarrow{T_{10}} G_{12} \xrightarrow{T_{13}} G_{20}
\end{aligned}
$$

System of equations

Example: $g=3$ and $\bar{A}=\left\{P_{1}, Q_{2}, P_{3}, P_{4}, Q_{5}, P_{6}, P_{7}\right.$, $\left.Q_{8}, Q_{9}, P_{10}, Q_{11}, Q_{12}, Q_{13}, Q_{14}, Q_{15}, P_{16}, P_{17}, Q_{18}, Q_{19}, Q_{20}\right\}$.

$$
\begin{aligned}
& G_{6} \stackrel{T_{16}}{\longleftrightarrow} G_{14} \stackrel{T_{19}}{\longleftrightarrow} G_{18} \stackrel{T_{4}}{\leftrightarrows} G_{2} \stackrel{T_{3}}{\stackrel{T_{11}}{\longleftrightarrow}} G_{10} \\
& G_{16} \stackrel{T_{6}}{\longleftrightarrow} G_{4} \xrightarrow[T_{9}]{\stackrel{T_{5}}{\longleftrightarrow}} G_{8} \xrightarrow{T_{10}} G_{12} \xrightarrow{T_{13}} G_{20}
\end{aligned}
$$

System of equations

Example: $g=3$ and $\bar{A}=\left\{P_{1}, Q_{2}, P_{3}, P_{4}, Q_{5}, P_{6}, P_{7}\right.$, $\left.Q_{8}, Q_{9}, P_{10}, Q_{11}, Q_{12}, Q_{13}, Q_{14}, Q_{15}, P_{16}, P_{17}, Q_{18}, Q_{19}, Q_{20}\right\}$.

$$
\begin{aligned}
& T_{2} \subset G_{1} \xrightarrow{T_{3}} G_{9} \xrightarrow{T_{10}} G_{13} \quad G_{17} \stackrel{T_{6}}{\longleftarrow} G_{5} \supset T_{7} \\
& G_{3} \underset{T_{20}}{\stackrel{T_{4}}{\sim}} G_{19} \xrightarrow{T_{1}} G_{11}{ }^{\text {no conflicts }} \quad G_{7} \stackrel{T_{16}}{\longleftrightarrow} G_{15} \longmapsto T_{17} \\
& G_{6} \stackrel{T_{16}}{\longleftrightarrow} G_{14} \stackrel{T_{19}}{\longleftrightarrow} G_{18} \stackrel{T_{4}}{\leftrightarrows} G_{2} \stackrel{T_{3}}{\stackrel{T_{11}}{\longleftrightarrow}} G_{10} \\
& G_{16} \stackrel{T_{6}}{\longleftrightarrow} G_{4} \xrightarrow[T_{9}]{\stackrel{T_{5}}{\longleftrightarrow}} G_{8} \xrightarrow{T_{10}} G_{12} \xrightarrow{T_{13}} G_{20}
\end{aligned}
$$

System of equations

Example: $g=3$ and $\bar{A}=\left\{P_{1}, Q_{2}, P_{3}, P_{4}, Q_{5}, P_{6}, P_{7}\right.$, $\left.Q_{8}, Q_{9}, P_{10}, Q_{11}, Q_{12}, Q_{13}, Q_{14}, Q_{15}, P_{16}, P_{17}, Q_{18}, Q_{19}, Q_{20}\right\}$.

$$
\begin{aligned}
& T_{2} \subset G_{1} \xrightarrow{T_{3}} G_{9} \xrightarrow{T_{10}} G_{13} \quad G_{17} \stackrel{T_{6}}{\longleftarrow} G_{5} \supset T_{7} \\
& G_{3} \underset{T_{20}}{\stackrel{T_{4}}{\longleftrightarrow}} G_{19} \xrightarrow{T_{1}} G_{11} \quad G_{7} \stackrel{T_{16}}{\longleftrightarrow} G_{15} \longmapsto T_{17} \\
& G_{6} \stackrel{T_{16}}{\longleftrightarrow} G_{14} \stackrel{T_{19}}{\longleftrightarrow} G_{18} \stackrel{T_{4}}{\leftrightarrows} G_{2} \stackrel{T_{3}}{\stackrel{T_{11}}{\longleftrightarrow}} G_{10} \\
& G_{16} \stackrel{T_{6}}{\longleftrightarrow} G_{4} \stackrel{T_{9}}{T_{5}} G_{8} \xrightarrow{T_{10}} G_{12} \xrightarrow{T_{13}} G_{20}
\end{aligned}
$$

Extremal parameters

Given an extremal \bar{A},
(1) let $G_{1}, \ldots, G_{8 g-4}$ be the unique solution to

$$
G_{\sigma(i)}=\left\{\begin{array}{ll}
T_{i} G_{i-2} & \text { if } A_{i}=P_{i} \\
T_{\tau(i)+1} G_{\tau(i)} & \text { if } A_{i}=Q_{i}
\end{array} \text { with } G_{i} \in\left[P_{i}, P_{i+1}\right],\right.
$$

(2) set $H_{i}:=U_{i} G_{\tau(i)-1}$, and

Theorem (A.)

The map $F_{\bar{A}}$ is bijective on

$$
\Omega_{\bar{A}}=\bigcup_{i=1}^{8 g-4}\left[H_{i+1}, G_{i-2}\right] \times\left[P_{i}, Q_{i}\right] \cup\left[H_{i+1}, G_{i-1}\right] \times\left[Q_{i}, P_{i+1}\right]
$$

Extremal parameters

Given an extremal \bar{A},
(1) let $G_{1}, \ldots, G_{8 g-4}$ be the unique solution to

$$
G_{\sigma(i)}=\left\{\begin{array}{ll}
T_{i} G_{i-2} & \text { if } A_{i}=P_{i} \\
T_{\tau(i)+1} G_{\tau(i)} & \text { if } A_{i}=Q_{i}
\end{array} \text { with } G_{i} \in\left[P_{i}, P_{i+1}\right],\right.
$$

(2) set $H_{i}:=U_{i} G_{\tau(i)-1}$, and
(3) set $B_{i}:=T_{\tau \sigma(i)+1} G_{\tau \sigma(i)}$.

Theorem (A.)
The map $F_{\bar{A}}$ is bijective on

$$
\Omega_{\bar{A}}=\bigcup_{i=1}^{8 g-4}\left[H_{i+1}, G_{i-2}\right] \times\left[P_{i}, Q_{i}\right] \cup\left[H_{i+1}, G_{i-1}\right] \times\left[Q_{i}, P_{i+1}\right],
$$

Extremal parameters

Given an extremal \bar{A},
(1) let $G_{1}, \ldots, G_{8 g-4}$ be the unique solution to

$$
G_{\sigma(i)}=\left\{\begin{array}{ll}
T_{i} G_{i-2} & \text { if } A_{i}=P_{i} \\
T_{\tau(i)+1} G_{\tau(i)} & \text { if } A_{i}=Q_{i}
\end{array} \text { with } G_{i} \in\left[P_{i}, P_{i+1}\right],\right.
$$

(2) set $H_{i}:=U_{i} G_{\tau(i)-1}$, and
(3) set $B_{i}:=T_{\tau \sigma(i)+1} G_{\tau \sigma(i)}$.

Theorem (A.)

The map $F_{\bar{A}}$ is bijective on

$$
\Omega_{\bar{A}}=\bigcup_{i=1}^{8 g-4}\left[H_{i+1}, G_{i-2}\right] \times\left[P_{i}, Q_{i}\right] \cup\left[H_{i+1}, G_{i-1}\right] \times\left[Q_{i}, P_{i+1}\right]
$$

the map $F_{\bar{B}}$ is bijective on

$$
\Omega_{\bar{B}}=\bigcup_{i=1}^{8 g-4}\left[P_{i}, Q_{i}\right] \times\left[H_{i+1}, G_{i-2}\right] \cup\left[Q_{i}, P_{i+1}\right] \times\left[H_{i+1}, G_{i-1}\right]
$$

and \bar{B} is dual to \bar{A}.

Extremal parameters

Given an extremal \bar{A},
(1) let $G_{1}, \ldots, G_{8 g-4}$ be the unique solution to

$$
G_{\sigma(i)}=\left\{\begin{array}{ll}
T_{i} G_{i-2} & \text { if } A_{i}=P_{i} \\
T_{\tau(i)+1} G_{\tau(i)} & \text { if } A_{i}=Q_{i}
\end{array} \text { with } G_{i} \in\left[P_{i}, P_{i+1}\right],\right.
$$

(2) set $H_{i}:=U_{i} G_{\tau(i)-1}$, and
(3) set $B_{i}:=T_{\tau \sigma(i)+1} G_{\tau \sigma(i)}$.

Theorem (A.)

The map $F_{\bar{A}}$ is bijective on

$$
\Omega_{\bar{A}}=\bigcup_{i=1}^{8 g-4}\left[H_{i+1}, G_{i-2}\right] \times\left[P_{i}, Q_{i}\right] \cup\left[H_{i+1}, G_{i-1}\right] \times\left[Q_{i}, P_{i+1}\right]
$$

the map $F_{\bar{B}}$ is bijective on

$$
\begin{aligned}
\Omega_{\bar{B}}=\bigcup_{i=1}^{8 g-4} & {\left[Q_{i+2}, P_{i-1}\right] \times\left[B_{i}, B_{i+1}\right] } \\
& \cup\left[P_{i-1}, P_{i}\right] \times\left[T_{j} B_{j}, B_{i+1}\right]
\end{aligned} \quad j=\tau \sigma(i)+1
$$

and \bar{B} is dual to \bar{A}.

Dual codes

Other parameter classes

Domains for $F_{\bar{A}}$ are known when

- \bar{A} satisfies the short cycle property, or
- \bar{A} is extremal, or
- \bar{A} is dual to an extremal parameter choice.

In all these cases, $\Omega_{\bar{A}}$ has finite rectangular structure and $\left.F_{\bar{A}}\right|_{\Omega_{\bar{A}}}$ is conjugate to $F_{\text {geo }}: \Omega_{\text {geo }} \rightarrow \Omega_{\text {geo }}$.

Other parameter classes

Domains for $F_{\bar{A}}$ are known when

- \bar{A} satisfies the short cycle property, or
- \bar{A} is extremal, or
- \bar{A} is dual to an extremal parameter choice.

In all these cases, $\Omega_{\bar{A}}$ has finite rectangular structure and $\left.F_{\bar{A}}\right|_{\Omega_{\bar{A}}}$ is conjugate to $F_{\text {geo }}: \Omega_{\text {geo }} \rightarrow \Omega_{\text {geo }}$.

This is conjectured to hold for any \bar{A} with $A_{i} \in\left[P_{i}, Q_{i}\right]$, but so far we do not even have a clear description of the set $\Omega_{\bar{A}}$ for generic parameters.

Next week

- How can we use $F_{\bar{A}}$ and $F_{\text {geo }}$ to compute $h_{\tilde{\mu}}\left(f_{\bar{A}}\right)$?
- What about $h_{\text {top }}\left(f_{\bar{P}}\right)$?
- How do these change when we change the parameters \bar{A} or change the polygon \mathcal{F} ?

[^0]: [1] S. Katok, I. Ugarcovici. Structure of attractors for boundary maps associated to Fuchsian groups, Geometriae Dedicata 191 (2017), 171-198.
 [2] A. Abrams. Extremal parameters and dual codes for Fuchsian boundary maps, Illinois Journal of Math.

