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Multiorder

Let G be an infinite countable group with the unit e.

Let ≺ be a total order of G and let g ∈ G.

Then we let g(≺) be the total order on G defined by

(1) a g(≺) b ⇐⇒ ag ≺ bg.

A total order ≺ of G is said to be of type Z if
1 for any a ≺ b the order interval [a,b]≺ = {a,b} ∪ {c : a ≺ c ≺ b} is

finite, and
2 there is no minimal or maximal element in G.

The action (1) on total orders is Borel measurable (total orders inherit the
Borel structure from {0,1}G×G, the space of all relations in G) and preserves
type Z.
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Multiorder
Any total order of G of type Z can be identified with an anchored bijection
bi : Z→ G (enumeration of G by the integers). Anchored means that
bi(0) = e.

The property “anchored” is necessary for uniqueness.

Let O denote the space of all anchored bijections from Z to G. Then O
inherits a natural Borel structure from GZ and the correspondence between
total orders of type Z and bijections from Z to G is a Borel-measurable
bijection.

The action (1) of G on total orders of type Z corresponds to the action on O
defined as follows:
if g ∈ G and bi ∈ O then, for any i ∈ Z,

(2) (g(bi))(i) = bi(i + k) · g−1, where k ∈ Z is such that g = bi(k).
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Multiorder

(2) (g(bi))(i) = bi(i + k) · g−1, where k is such that g = bi(k).
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Multiorder

Definition
By a multiorder on G we will understand any measure-preserving system
(O, ν,G), where ν a Borel probability measure on O, invariant under the
action of G given by (2).

Multiorder is a particular case of an invariant random order introduced by
John Kieffer in 1975. The difference is that IRO involves total orders of any
type (typically of type Q).

Using tilings one can prove that if G is amenable, then there exists a
multiorder on G of entropy zero.

(Moreover, that multiorder is uniformly Følner, but we will not use this
property.)
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Orbit equivalence of actions of different groups
Let (X , µ,G) and (Y , ν, Γ) be two probability measure-preserving actions of
two countable groups on two probability spaces.

We will say that these actions are orbit-equivalent if there exists a
measure-automorphism φ : X → Y of the probability spaces (X , µ) and
(Y , ν) which sends orbits to orbits, that is, for any x ∈ X we have

φ({gx : g ∈ G}) = {γ(φ(x)) : γ ∈ Γ}.

In this case, for µ-almost every x ∈ X and every g ∈ G there exists a γ ∈ Γ
such that

(3) φ(gx) = γ(φ(x)),

and every γ ∈ Γ satisfies (3) for some g.
There is usually no uniqueness: more than one element γ may satisfy (3) for
given g, one γ may satisfy (3) for more than one g. Uniqueness holds when
both actions are free.
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Orbit equivalence of actions of different groups

Because φ is invertible, the formula (3) can be written as follows:

(4) gx = φ−1(γ(φ(x))).

Now consider the action of Γ on (X , µ) given by the formula:

(5) γx = φ−1γφ(x).

Clearly, this new action (X , µ, Γ) is isomorphic to the original action (Y , ν, Γ)
(we have φγ = γφ, so φ establishes an isomorphism).

By (4), we have gx = γx , (or id(gx) = γ(id(x))), the action (X , µ, Γ) of Γ
on (X , µ) defined by (5) is orbit equivalent to the original action (X , µ,G)
(with identity playing the role of the conjugating map).

Tomasz Downarowicz (Wrocław) Seminar October 15, 2020 8 / 16



Orbit equivalence of actions of different groups

Because φ is invertible, the formula (3) can be written as follows:

(4) gx = φ−1(γ(φ(x))).

Now consider the action of Γ on (X , µ) given by the formula:

(5) γx = φ−1γφ(x).

Clearly, this new action (X , µ, Γ) is isomorphic to the original action (Y , ν, Γ)
(we have φγ = γφ, so φ establishes an isomorphism).

By (4), we have gx = γx , (or id(gx) = γ(id(x))), the action (X , µ, Γ) of Γ
on (X , µ) defined by (5) is orbit equivalent to the original action (X , µ,G)
(with identity playing the role of the conjugating map).

Tomasz Downarowicz (Wrocław) Seminar October 15, 2020 8 / 16



Orbit equivalence of actions of different groups

Because φ is invertible, the formula (3) can be written as follows:

(4) gx = φ−1(γ(φ(x))).

Now consider the action of Γ on (X , µ) given by the formula:

(5) γx = φ−1γφ(x).

Clearly, this new action (X , µ, Γ) is isomorphic to the original action (Y , ν, Γ)
(we have φγ = γφ, so φ establishes an isomorphism).

By (4), we have gx = γx , (or id(gx) = γ(id(x))), the action (X , µ, Γ) of Γ
on (X , µ) defined by (5) is orbit equivalent to the original action (X , µ,G)
(with identity playing the role of the conjugating map).

Tomasz Downarowicz (Wrocław) Seminar October 15, 2020 8 / 16



Orbit equivalence of actions of different groups

Because φ is invertible, the formula (3) can be written as follows:

(4) gx = φ−1(γ(φ(x))).

Now consider the action of Γ on (X , µ) given by the formula:

(5) γx = φ−1γφ(x).

Clearly, this new action (X , µ, Γ) is isomorphic to the original action (Y , ν, Γ)
(we have φγ = γφ, so φ establishes an isomorphism).

By (4), we have gx = γx , (or id(gx) = γ(id(x))), the action (X , µ, Γ) of Γ
on (X , µ) defined by (5) is orbit equivalent to the original action (X , µ,G)
(with identity playing the role of the conjugating map).

Tomasz Downarowicz (Wrocław) Seminar October 15, 2020 8 / 16



Orbit equivalence of actions of different groups

We have reduced the notion of orbit equivalence to actions of different groups
on the same probability space, and such that the conjugating map is the
identity.

In this context we can redefine orbit equivalence:

• Two actions (X , µ,G) and (X , µ, Γ) are orbit equivalent if they have the
same orbits:

{gx : g ∈ G} = {γx : γ ∈ Γ}.

If, in addition, both actions are free, then for µ-almost every x the
correspondence between g ∈ G and γ ∈ Γ given by gx = γx establishes a
bijection bix : Γ→ G (the direction is reversed on purpose).
Observe that the above bijection is always anchored because ex = x = eΓx .

Tomasz Downarowicz (Wrocław) Seminar October 15, 2020 9 / 16



Orbit equivalence of actions of different groups

We have reduced the notion of orbit equivalence to actions of different groups
on the same probability space, and such that the conjugating map is the
identity.

In this context we can redefine orbit equivalence:

• Two actions (X , µ,G) and (X , µ, Γ) are orbit equivalent if they have the
same orbits:

{gx : g ∈ G} = {γx : γ ∈ Γ}.

If, in addition, both actions are free, then for µ-almost every x the
correspondence between g ∈ G and γ ∈ Γ given by gx = γx establishes a
bijection bix : Γ→ G (the direction is reversed on purpose).
Observe that the above bijection is always anchored because ex = x = eΓx .

Tomasz Downarowicz (Wrocław) Seminar October 15, 2020 9 / 16



Orbit equivalence of actions of different groups

We have reduced the notion of orbit equivalence to actions of different groups
on the same probability space, and such that the conjugating map is the
identity.

In this context we can redefine orbit equivalence:

• Two actions (X , µ,G) and (X , µ, Γ) are orbit equivalent if they have the
same orbits:

{gx : g ∈ G} = {γx : γ ∈ Γ}.

If, in addition, both actions are free, then for µ-almost every x the
correspondence between g ∈ G and γ ∈ Γ given by gx = γx establishes a
bijection bix : Γ→ G (the direction is reversed on purpose).
Observe that the above bijection is always anchored because ex = x = eΓx .

Tomasz Downarowicz (Wrocław) Seminar October 15, 2020 9 / 16



Orbit equivalence of actions of different groups

We have reduced the notion of orbit equivalence to actions of different groups
on the same probability space, and such that the conjugating map is the
identity.

In this context we can redefine orbit equivalence:

• Two actions (X , µ,G) and (X , µ, Γ) are orbit equivalent if they have the
same orbits:

{gx : g ∈ G} = {γx : γ ∈ Γ}.

If, in addition, both actions are free, then for µ-almost every x the
correspondence between g ∈ G and γ ∈ Γ given by gx = γx establishes a
bijection bix : Γ→ G (the direction is reversed on purpose).

Observe that the above bijection is always anchored because ex = x = eΓx .

Tomasz Downarowicz (Wrocław) Seminar October 15, 2020 9 / 16



Orbit equivalence of actions of different groups

We have reduced the notion of orbit equivalence to actions of different groups
on the same probability space, and such that the conjugating map is the
identity.

In this context we can redefine orbit equivalence:

• Two actions (X , µ,G) and (X , µ, Γ) are orbit equivalent if they have the
same orbits:

{gx : g ∈ G} = {γx : γ ∈ Γ}.

If, in addition, both actions are free, then for µ-almost every x the
correspondence between g ∈ G and γ ∈ Γ given by gx = γx establishes a
bijection bix : Γ→ G (the direction is reversed on purpose).
Observe that the above bijection is always anchored because ex = x = eΓx .

Tomasz Downarowicz (Wrocław) Seminar October 15, 2020 9 / 16



Multiorder versus orbit equivalence to a Z-action
We remark that a Z-action is free if and only if almost every orbit is infinite.
Any free G-action also has infinite orbits.

Thus any Z-action orbit equivalent
to a free action of G is itself free and then the orbit equivalence establishes,
for µ-almost every x ∈ X an anchored bijection bix : Z→ G.

Theorem 1
Let (X , µ,G) be a free action on a probability space. Let (X , µ,Z) be a
Z-action orbit equivalent (via the identity map) to (X , µ,G). Let T = T1 be
the generating map of this Z-action. Then the map θ : X → O given by
θ(x) = bix , where bix : Z→ G is a bijection defined by the relation

(6) bix (i) = g ⇐⇒ T ix = gx ,

is a measure-theoretic factor map from (X , µ,G) to a multiorder (O, ν,G),
where ν = θ(µ), and the action of G on O is given by (2).

Corollary. Since every action of an amenable group is orbit-equivalent to a
Z-action, every free action of an amenable group has a multiorder as a factor.
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Multiorder vs. orbit equivalence, (6) bix (i) = g ⇐⇒ T ix = gx
Proof of Theorem 1. The only thing requiring a proof is the equivariance of
the map θ, i.e. we need to show that, for µ-almost all x ∈ X and all g ∈ G,
we have

θ(gx) = g(θ(x)), i.e. bigx = g(bix ).

By (2), we need to show that, for µ-almost every x ∈ X , all g ∈ G and all
i ∈ Z, we have

bigx (i) = g(bix )(i)
(2)
= bix (i + k) · g−1,

where k is such that g = bix (k).
By (6) and since the actions are free, the elements g1 = bigx (i) and
g2 = bix (i + k) are (µ-almost surely) the unique members of G for which the
respective equalities hold:

(A) T igx
(6) applied to gx

= g1gx ,

(B) T i+kx
(6) applied to i+k

= g2x ,
while the fact that g = bix (k) means that

(C) gx
(6) applied to k

= T kx .
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Multiorder versus orbit equivalence to a Z-action
(A) T igx = g1gx ,

(B) T i+kx = g2x ,

(C) gx = T kx .

Combining (A) and (C) we get

g1gx = T i(T kx),

which, combined with (B) yields

g1gx = g2x .

Because the action of G is free, for µ-almost every x the last equality allows
us to conclude that g1g = g2, i.e. g1 = g2g−1, i.e.

bigx (i) = bix (i + k)g−1.

This is exactly what we needed to show.
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Multiorder versus orbit equivalence to a Z-action
Notation: Suppose ϕ : X → O is a measure-theoretic factor map from a
measure-preserving G-action (X , µ,G) to a multiorder (O, ν,G).

Given x ∈ X , the associated bijection bix = ϕ(x) ∈ O, and i ∈ Z, instead of
bix (i) we will write ix (the i th element of G in the order associated to x).
Note that ix ∈ G.

Theorem 2
Let ϕ be as above. Then (X , µ,G) is orbit-equivalent to the Z-action
generated by the successor map defined as follows:

(7) Sx = 1xx .

Moreover, for any k ∈ Z, we have

(8) Skx = kxx .

We do not assume the actions (X , µ,G) or (O, ν,G) to be free.
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Proof of Theorem 2, (7) Sx = 1xx ; (8) Sk x = kxx .

Proof. Clearly, the map S : X → X defined by (7) is measurable.
It suffices to prove (8) for S defined by (7). Indeed, since kx (with k ∈ Z)
ranges over the entire group G, (8) implies that the orbits {Skx : k ∈ Z} and
{gx : g ∈ G} are equal.
We will first show (8) for k ≥ 0, by induction.
Clearly, (8) is true for k = 0 and, by (7), for k = 1.
Suppose (8) holds for some k ≥ 1. Then

Sk+1x = S(Skx)
(8)
= S(kxx) = S(gx)

(7)
= 1gx (gx),

where we have let g = kx . By (2) (applied to i = 1), we have

1gx = bigx (1)
(2)
= bix (1 + k) · g−1 = (k + 1)x · g−1.

Eventually,

Sk+1(x) = 1gx (gx) = (k + 1)xg−1gx = (k + 1)x (x),

and (8) is shown for k + 1.
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ranges over the entire group G, (8) implies that the orbits {Skx : k ∈ Z} and
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Proof of Theorem 2, (7) Sx = 1xx .
Now consider the map Tx = (−1)xx .

By an inductive argument analogous as that used for S, one can show that
(µ-almost surely) for any k ≥ 0 the following holds:

T kx = (−k)xx .

To complete the proof of (8) for negative integers it remains to show that T is
the inverse map of S.
Denote x ′ = Tx . Then we have x ′ = (−1)xx , i.e.

(9) x = ((−1)x )−1x ′.

Let g = (−1)x (and consequently k = −1). By (2) applied to i = 1,

(10) 1gx = (1 + k)x · g−1 = 0x · g−1 = g−1.

Now we can compute

(11) ((−1)x )−1 = g−1 (10)
= 1gx = 1(−1)x x = 1Tx = 1x ′

.

Plugging (11) into (9) we obtain x = 1x ′
x ′

(7)
= S(x ′) = STx .
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Proof of Theorem 2

By a symmetric argument we also have x = TSx , which implies, on one
hand, that S is invertible (with the inverse T ), and on the other hand, that (8)
holds for negative integers. This ends the proof.

Comment. By the theorem of Dye, all ergodic Z-actions are mutually orbit
equivalent. What is special about the action generated by the transformation
S is that the orbit equivalence with the G-action in question is given by the
identity map, in particular S preserves the same measure µ as the G-action,
and that it is determined by the multiorder factor of that action.

That’s all for today!

Tomasz Downarowicz (Wrocław) Seminar October 15, 2020 16 / 16



Proof of Theorem 2

By a symmetric argument we also have x = TSx , which implies, on one
hand, that S is invertible (with the inverse T ), and on the other hand, that (8)
holds for negative integers. This ends the proof.

Comment. By the theorem of Dye, all ergodic Z-actions are mutually orbit
equivalent. What is special about the action generated by the transformation
S is that the orbit equivalence with the G-action in question is given by the
identity map, in particular S preserves the same measure µ as the G-action,
and that it is determined by the multiorder factor of that action.

That’s all for today!

Tomasz Downarowicz (Wrocław) Seminar October 15, 2020 16 / 16



Proof of Theorem 2

By a symmetric argument we also have x = TSx , which implies, on one
hand, that S is invertible (with the inverse T ), and on the other hand, that (8)
holds for negative integers. This ends the proof.

Comment. By the theorem of Dye, all ergodic Z-actions are mutually orbit
equivalent. What is special about the action generated by the transformation
S is that the orbit equivalence with the G-action in question is given by the
identity map, in particular S preserves the same measure µ as the G-action,
and that it is determined by the multiorder factor of that action.

That’s all for today!

Tomasz Downarowicz (Wrocław) Seminar October 15, 2020 16 / 16


