Multiorder vs. orbit equivalence to a \mathbb{Z} -action

Tomasz Downarowicz

Faculty of Pure and Applied Mathematics Wroclaw University of Science and Technology Poland

イロト イポト イラト イラ

based on a joint work with

Piotr Oprocha and Guohua Zhang

-

Image: A matrix and a matrix

based on a joint work with

Piotr Oprocha and Guohua Zhang

some of the ideas presented in this particular section were suggested by Tom Meyerovitch

4 3 5 4 3

Tomasz Downarowicz (Wrocław)

2

イロト イヨト イヨト イヨト

Let G be an infinite countable group with the unit e.

2

Let G be an infinite countable group with the unit e.

Let \prec be a total order of *G* and let $g \in G$.

э

Let *G* be an infinite countable group with the unit *e*. Let \prec be a total order of *G* and let $g \in G$. Then we let $g(\prec)$ be the total order on *G* defined by

$$(1) a g(\prec) b \iff ag \prec bg.$$

Let *G* be an infinite countable group with the unit *e*. Let \prec be a total order of *G* and let $g \in G$. Then we let $g(\prec)$ be the total order on *G* defined by

$$(1) a g(\prec) b \iff ag \prec bg.$$

A total order \prec of *G* is said to be *of type* \mathbb{Z} if

Let *G* be an infinite countable group with the unit *e*. Let \prec be a total order of *G* and let $g \in G$. Then we let $g(\prec)$ be the total order on *G* defined by

(1)
$$a g(\prec) b \iff ag \prec bg.$$

A total order \prec of *G* is said to be *of type* \mathbb{Z} if

• for any $a \prec b$ the order interval $[a, b]^{\prec} = \{a, b\} \cup \{c : a \prec c \prec b\}$ is finite, and

4 3 5 4 3 5 5

Image: A matrix and a matrix

Let *G* be an infinite countable group with the unit *e*. Let \prec be a total order of *G* and let $g \in G$. Then we let $g(\prec)$ be the total order on *G* defined by

$$(1) a g(\prec) b \iff ag \prec bg.$$

A total order \prec of *G* is said to be *of type* \mathbb{Z} if

- for any $a \prec b$ the order interval $[a, b]^{\prec} = \{a, b\} \cup \{c : a \prec c \prec b\}$ is finite, and
- 2 there is no minimal or maximal element in *G*.

< ロ > < 同 > < 回 > < 回 >

Let *G* be an infinite countable group with the unit *e*. Let \prec be a total order of *G* and let $g \in G$. Then we let $g(\prec)$ be the total order on *G* defined by

$$(1) a g(\prec) b \iff ag \prec bg.$$

A total order \prec of *G* is said to be *of type* \mathbb{Z} if

- for any $a \prec b$ the order interval $[a, b]^{\prec} = \{a, b\} \cup \{c : a \prec c \prec b\}$ is finite, and
- 2 there is no minimal or maximal element in G.

The action (1) on total orders is Borel measurable (total orders inherit the Borel structure from $\{0, 1\}^{G \times G}$, the space of all relations in *G*) and preserves type \mathbb{Z} .

Any total order of *G* of type \mathbb{Z} can be identified with an anchored bijection bi : $\mathbb{Z} \to G$ (enumeration of *G* by the integers). *Anchored* means that bi(0) = *e*.

Any total order of *G* of type \mathbb{Z} can be identified with an anchored bijection bi : $\mathbb{Z} \to G$ (enumeration of *G* by the integers). *Anchored* means that bi(0) = *e*.

The property "anchored" is necessary for uniqueness.

< ロ > < 同 > < 回 > < 回 >

Any total order of *G* of type \mathbb{Z} can be identified with an anchored bijection bi : $\mathbb{Z} \to G$ (enumeration of *G* by the integers). *Anchored* means that bi(0) = *e*.

The property "anchored" is necessary for uniqueness.

Let \mathcal{O} denote the space of all anchored bijections from \mathbb{Z} to G. Then \mathcal{O} inherits a natural Borel structure from $G^{\mathbb{Z}}$ and the correspondence between total orders of type \mathbb{Z} and bijections from \mathbb{Z} to G is a Borel-measurable bijection.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Any total order of *G* of type \mathbb{Z} can be identified with an anchored bijection bi : $\mathbb{Z} \to G$ (enumeration of *G* by the integers). *Anchored* means that bi(0) = *e*.

The property "anchored" is necessary for uniqueness.

Let \mathcal{O} denote the space of all anchored bijections from \mathbb{Z} to G. Then \mathcal{O} inherits a natural Borel structure from $G^{\mathbb{Z}}$ and the correspondence between total orders of type \mathbb{Z} and bijections from \mathbb{Z} to G is a Borel-measurable bijection.

The action (1) of *G* on total orders of type \mathbb{Z} corresponds to the action on \mathcal{O} defined as follows:

イロト 不得 トイヨト イヨト

Any total order of *G* of type \mathbb{Z} can be identified with an anchored bijection bi : $\mathbb{Z} \to G$ (enumeration of *G* by the integers). *Anchored* means that bi(0) = *e*.

The property "anchored" is necessary for uniqueness.

Let \mathcal{O} denote the space of all anchored bijections from \mathbb{Z} to G. Then \mathcal{O} inherits a natural Borel structure from $G^{\mathbb{Z}}$ and the correspondence between total orders of type \mathbb{Z} and bijections from \mathbb{Z} to G is a Borel-measurable bijection.

The action (1) of *G* on total orders of type \mathbb{Z} corresponds to the action on \mathcal{O} defined as follows:

if $g \in G$ and bi $\in O$ then, for any $i \in \mathbb{Z}$,

Any total order of *G* of type \mathbb{Z} can be identified with an anchored bijection bi : $\mathbb{Z} \to G$ (enumeration of *G* by the integers). *Anchored* means that bi(0) = *e*.

The property "anchored" is necessary for uniqueness.

Let \mathcal{O} denote the space of all anchored bijections from \mathbb{Z} to G. Then \mathcal{O} inherits a natural Borel structure from $G^{\mathbb{Z}}$ and the correspondence between total orders of type \mathbb{Z} and bijections from \mathbb{Z} to G is a Borel-measurable bijection.

The action (1) of *G* on total orders of type \mathbb{Z} corresponds to the action on \mathcal{O} defined as follows:

if $g \in G$ and bi $\in O$ then, for any $i \in \mathbb{Z}$,

(2)
$$(g(bi))(i) = bi(i+k) \cdot g^{-1}$$
, where $k \in \mathbb{Z}$ is such that $g = bi(k)$.

(2)
$$(g(bi))(i) = bi(i+k) \cdot g^{-1}$$
, where k is such that $g = bi(k)$.

2

イロト イヨト イヨト イヨト

(2) $(g(bi))(i) = bi(i+k) \cdot g^{-1}$, where k is such that g = bi(k).

-

(2) $(g(bi))(i) = bi(i+k) \cdot g^{-1}$, where k is such that g = bi(k).

(2) $(g(bi))(i) = bi(i+k) \cdot g^{-1}$, where k is such that g = bi(k).

< 17 ▶

(2) $(g(bi))(i) = bi(i+k) \cdot g^{-1}$, where k is such that g = bi(k).

< 🗇 🕨

(2) $(g(bi))(i) = bi(i+k) \cdot g^{-1}$, where k is such that g = bi(k).

< 6 k

Definition

By a *multiorder* on G we will understand any measure-preserving system (\mathcal{O}, ν, G) , where ν a Borel probability measure on \mathcal{O} , invariant under the action of G given by (2).

A (10) A (10)

Definition

By a *multiorder* on G we will understand any measure-preserving system (\mathcal{O}, ν, G) , where ν a Borel probability measure on \mathcal{O} , invariant under the action of G given by (2).

Multiorder is a particular case of an *invariant random order* introduced by John Kieffer in 1975. The difference is that IRO involves total orders of any type (typically of type \mathbb{Q}).

Definition

By a *multiorder* on G we will understand any measure-preserving system (\mathcal{O}, ν, G) , where ν a Borel probability measure on \mathcal{O} , invariant under the action of G given by (2).

Multiorder is a particular case of an *invariant random order* introduced by John Kieffer in 1975. The difference is that IRO involves total orders of any type (typically of type \mathbb{Q}).

Using tilings one can prove that if G is *amenable*, then there exists a multiorder on G of entropy zero.

イロト イポト イラト イラ

Definition

By a *multiorder* on G we will understand any measure-preserving system (\mathcal{O}, ν, G) , where ν a Borel probability measure on \mathcal{O} , invariant under the action of G given by (2).

Multiorder is a particular case of an *invariant random order* introduced by John Kieffer in 1975. The difference is that IRO involves total orders of any type (typically of type \mathbb{Q}).

Using tilings one can prove that if G is *amenable*, then there exists a multiorder on G of entropy zero.

(Moreover, that multiorder is uniformly Følner, but we will not use this property.)

< ロ > < 同 > < 回 > < 回 >

Let (X, μ, G) and (Y, ν, Γ) be two probability measure-preserving actions of two countable groups on two probability spaces.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let (X, μ, G) and (Y, ν, Γ) be two probability measure-preserving actions of two countable groups on two probability spaces.

We will say that these actions are *orbit-equivalent* if there exists a measure-automorphism $\phi : X \to Y$ of the probability spaces (X, μ) and (Y, ν) which sends orbits to orbits, that is, for any $x \in X$ we have

イロト 不得 トイヨト イヨト

Let (X, μ, G) and (Y, ν, Γ) be two probability measure-preserving actions of two countable groups on two probability spaces.

We will say that these actions are *orbit-equivalent* if there exists a measure-automorphism $\phi : X \to Y$ of the probability spaces (X, μ) and (Y, ν) which sends orbits to orbits, that is, for any $x \in X$ we have

$$\phi(\{gx:g\in G\})=\{\gamma(\phi(x)):\gamma\in \Gamma\}.$$

イロト 不得 トイヨト イヨト

Let (X, μ, G) and (Y, ν, Γ) be two probability measure-preserving actions of two countable groups on two probability spaces.

We will say that these actions are *orbit-equivalent* if there exists a measure-automorphism $\phi : X \to Y$ of the probability spaces (X, μ) and (Y, ν) which sends orbits to orbits, that is, for any $x \in X$ we have

$$\phi(\{g\mathbf{x}: \mathbf{g} \in \mathbf{G}\}) = \{\gamma(\phi(\mathbf{x})): \gamma \in \mathsf{F}\}.$$

In this case, for μ -almost every $x \in X$ and every $g \in G$ there exists a $\gamma \in \Gamma$ such that

(3)
$$\phi(gx) = \gamma(\phi(x)),$$

and every $\gamma \in \Gamma$ satisfies (3) for some g.

Let (X, μ, G) and (Y, ν, Γ) be two probability measure-preserving actions of two countable groups on two probability spaces.

We will say that these actions are *orbit-equivalent* if there exists a measure-automorphism $\phi : X \to Y$ of the probability spaces (X, μ) and (Y, ν) which sends orbits to orbits, that is, for any $x \in X$ we have

$$\phi(\{g\mathbf{x}: \mathbf{g} \in \mathbf{G}\}) = \{\gamma(\phi(\mathbf{x})): \gamma \in \mathsf{F}\}.$$

In this case, for μ -almost every $x \in X$ and every $g \in G$ there exists a $\gamma \in \Gamma$ such that

(3)
$$\phi(gx) = \gamma(\phi(x)),$$

and every $\gamma \in \Gamma$ satisfies (3) for some g.

There is usually no uniqueness: more than one element γ may satisfy (3) for given g, one γ may satisfy (3) for more than one g. Uniqueness holds when both actions are free.

Because ϕ is invertible, the formula (3) can be written as follows:

(4)
$$gx = \phi^{-1}(\gamma(\phi(x))).$$

Because ϕ is invertible, the formula (3) can be written as follows:

(4)
$$gx = \phi^{-1}(\gamma(\phi(x))).$$

Now consider the action of Γ on (X, μ) given by the formula:

(5)
$$\gamma \boldsymbol{x} = \phi^{-1} \gamma \phi(\boldsymbol{x}).$$

Because ϕ is invertible, the formula (3) can be written as follows:

(4)
$$gx = \phi^{-1}(\gamma(\phi(x))).$$

Now consider the action of Γ on (X, μ) given by the formula:

(5)
$$\gamma \boldsymbol{x} = \phi^{-1} \gamma \phi(\boldsymbol{x}).$$

Clearly, this new action (X, μ, Γ) is isomorphic to the original action (Y, ν, Γ) (we have $\phi\gamma = \gamma\phi$, so ϕ establishes an isomorphism).

Because ϕ is invertible, the formula (3) can be written as follows:

(4)
$$gx = \phi^{-1}(\gamma(\phi(x))).$$

Now consider the action of Γ on (X, μ) given by the formula:

(5)
$$\gamma \boldsymbol{x} = \phi^{-1} \gamma \phi(\boldsymbol{x}).$$

Clearly, this new action (X, μ, Γ) is isomorphic to the original action (Y, ν, Γ) (we have $\phi\gamma = \gamma\phi$, so ϕ establishes an isomorphism).

By (4), we have $gx = \gamma x$, (or $id(gx) = \gamma(id(x))$), the action (X, μ, Γ) of Γ on (X, μ) defined by (5) is orbit equivalent to the original action (X, μ, G) (with identity playing the role of the conjugating map).

A D A A B A A B A A B A B B
We have reduced the notion of orbit equivalence to actions of different groups on *the same* probability space, and such that the conjugating map is the identity.

< ロ > < 同 > < 回 > < 回 >

We have reduced the notion of orbit equivalence to actions of different groups on *the same* probability space, and such that the conjugating map is the identity.

In this context we can redefine orbit equivalence:

4 D K 4 B K 4 B K 4 B K

We have reduced the notion of orbit equivalence to actions of different groups on *the same* probability space, and such that the conjugating map is the identity.

In this context we can redefine orbit equivalence:

• Two actions (X, μ, G) and (X, μ, Γ) are orbit equivalent if they have *the same orbits*:

$$\{g\mathbf{x}: \mathbf{g} \in \mathbf{G}\} = \{\gamma\mathbf{x}: \gamma \in \mathsf{\Gamma}\}.$$

We have reduced the notion of orbit equivalence to actions of different groups on *the same* probability space, and such that the conjugating map is the identity.

In this context we can redefine orbit equivalence:

• Two actions (X, μ, G) and (X, μ, Γ) are orbit equivalent if they have *the* same orbits:

$$\{g\mathbf{x}: \mathbf{g} \in \mathbf{G}\} = \{\gamma\mathbf{x}: \gamma \in \mathsf{\Gamma}\}.$$

If, in addition, both actions are free, then for μ -almost every x the correspondence between $g \in G$ and $\gamma \in \Gamma$ given by $gx = \gamma x$ establishes a *bijection* $bi_x : \Gamma \to G$ (the direction is reversed on purpose).

We have reduced the notion of orbit equivalence to actions of different groups on *the same* probability space, and such that the conjugating map is the identity.

In this context we can redefine orbit equivalence:

• Two actions (X, μ, G) and (X, μ, Γ) are orbit equivalent if they have *the* same orbits:

$$\{g\mathbf{x}: \mathbf{g} \in \mathbf{G}\} = \{\gamma\mathbf{x}: \gamma \in \mathsf{\Gamma}\}.$$

If, in addition, both actions are free, then for μ -almost every x the correspondence between $g \in G$ and $\gamma \in \Gamma$ given by $gx = \gamma x$ establishes a *bijection* $bi_x : \Gamma \to G$ (the direction is reversed on purpose). Observe that the above bijection is always <u>anchored</u> because $ex = x = e_{\Gamma}x$.

We remark that a \mathbb{Z} -action is free if and only if almost every orbit is infinite. Any free *G*-action also has infinite orbits.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

We remark that a \mathbb{Z} -action is free if and only if almost every orbit is infinite. Any free *G*-action also has infinite orbits. Thus any \mathbb{Z} -action orbit equivalent to a free action of *G* is itself free and then the orbit equivalence establishes, for μ -almost every $x \in X$ an anchored bijection $bi_x : \mathbb{Z} \to G$.

4 D K 4 B K 4 B K 4 B K

We remark that a \mathbb{Z} -action is free if and only if almost every orbit is infinite. Any free *G*-action also has infinite orbits. Thus any \mathbb{Z} -action orbit equivalent to a free action of *G* is itself free and then the orbit equivalence establishes, for μ -almost every $x \in X$ an anchored bijection $bi_x : \mathbb{Z} \to G$.

Theorem 1

Let (X, μ, G) be a <u>free</u> action on a probability space. Let (X, μ, \mathbb{Z}) be a \mathbb{Z} -action orbit equivalent (via the identity map) to (X, μ, G) . Let $T = T_1$ be the generating map of this \mathbb{Z} -action.

We remark that a \mathbb{Z} -action is free if and only if almost every orbit is infinite. Any free *G*-action also has infinite orbits. Thus any \mathbb{Z} -action orbit equivalent to a free action of *G* is itself free and then the orbit equivalence establishes, for μ -almost every $x \in X$ an anchored bijection $bi_x : \mathbb{Z} \to G$.

Theorem 1

Let (X, μ, G) be a <u>free</u> action on a probability space. Let (X, μ, \mathbb{Z}) be a \mathbb{Z} -action orbit equivalent (via the identity map) to (X, μ, G) . Let $T = T_1$ be the generating map of this \mathbb{Z} -action. Then the map $\theta : X \to \mathcal{O}$ given by $\theta(x) = bi_x$, where $bi_x : \mathbb{Z} \to G$ is a bijection defined by the relation

(6)
$$bi_x(i) = g \iff T^i x = gx_i$$

is a measure-theoretic factor map from (X, μ, G) to a multiorder (\mathcal{O}, ν, G) , where $\nu = \theta(\mu)$, and the action of *G* on \mathcal{O} is given by (2).

We remark that a \mathbb{Z} -action is free if and only if almost every orbit is infinite. Any free *G*-action also has infinite orbits. Thus any \mathbb{Z} -action orbit equivalent to a free action of *G* is itself free and then the orbit equivalence establishes, for μ -almost every $x \in X$ an anchored bijection $bi_x : \mathbb{Z} \to G$.

Theorem 1

Let (X, μ, G) be a <u>free</u> action on a probability space. Let (X, μ, \mathbb{Z}) be a \mathbb{Z} -action orbit equivalent (via the identity map) to (X, μ, G) . Let $T = T_1$ be the generating map of this \mathbb{Z} -action. Then the map $\theta : X \to \mathcal{O}$ given by $\theta(x) = bi_x$, where $bi_x : \mathbb{Z} \to G$ is a bijection defined by the relation

(6)
$$bi_x(i) = g \iff T^i x = gx$$

is a measure-theoretic factor map from (X, μ, G) to a multiorder (\mathcal{O}, ν, G) , where $\nu = \theta(\mu)$, and the action of *G* on \mathcal{O} is given by (2).

Corollary. Since every action of an *amenable* group is orbit-equivalent to a \mathbb{Z} -action, every *free* action of an amenable group has a multiorder as a factor,

$$\theta(gx) = g(\theta(x)), \text{ i.e. } bi_{gx} = g(bi_x).$$

イロト イポト イラト イラト

$$\theta(gx) = g(\theta(x)), \text{ i.e. } bi_{gx} = g(bi_x).$$

By (2), we need to show that, for μ -almost every $x \in X$, all $g \in G$ and all $i \in \mathbb{Z}$, we have

$$\mathsf{bi}_{gx}(i) = g(\mathsf{bi}_x)(i) \stackrel{(2)}{=} \mathsf{bi}_x(i+k) \cdot g^{-1},$$

where *k* is such that $g = bi_x(k)$.

$$\theta(gx) = g(\theta(x))$$
, i.e. $bi_{gx} = g(bi_x)$.

By (2), we need to show that, for μ -almost every $x \in X$, all $g \in G$ and all $i \in \mathbb{Z}$, we have

$$\operatorname{bi}_{gx}(i) = g(\operatorname{bi}_x)(i) \stackrel{(2)}{=} \operatorname{bi}_x(i+k) \cdot g^{-1},$$

where *k* is such that $g = bi_x(k)$.

By (6) and since the actions are free, the elements $g_1 = bi_{gx}(i)$ and $g_2 = bi_x(i+k)$ are (μ -almost surely) the unique members of *G* for which the respective equalities hold:

$$\theta(gx) = g(\theta(x))$$
, i.e. $bi_{gx} = g(bi_x)$.

By (2), we need to show that, for μ -almost every $x \in X$, all $g \in G$ and all $i \in \mathbb{Z}$, we have

$$\operatorname{bi}_{gx}(i) = g(\operatorname{bi}_x)(i) \stackrel{(2)}{=} \operatorname{bi}_x(i+k) \cdot g^{-1},$$

where *k* is such that $g = bi_x(k)$.

By (6) and since the actions are free, the elements $g_1 = bi_{gx}(i)$ and $g_2 = bi_x(i+k)$ are (μ -almost surely) the unique members of *G* for which the respective equalities hold:

(A) $T^{i}gx \stackrel{(6) \text{ applied to } gx}{=} g_{1}gx$,

$$\theta(gx) = g(\theta(x)), \text{ i.e. } bi_{gx} = g(bi_x).$$

By (2), we need to show that, for μ -almost every $x \in X$, all $g \in G$ and all $i \in \mathbb{Z}$, we have

$$\operatorname{bi}_{gx}(i) = g(\operatorname{bi}_x)(i) \stackrel{(2)}{=} \operatorname{bi}_x(i+k) \cdot g^{-1},$$

where *k* is such that $g = bi_x(k)$.

By (6) and since the actions are free, the elements $g_1 = bi_{gx}(i)$ and $g_2 = bi_x(i+k)$ are (μ -almost surely) the unique members of *G* for which the respective equalities hold:

(A)
$$T^{i}gx \stackrel{(6) applied to gx}{=} g_{1}gx,$$

(B) $T^{i+k}x \stackrel{(6) applied to i+k}{=} g_{2}x,$

$$\theta(gx) = g(\theta(x))$$
, i.e. $bi_{gx} = g(bi_x)$.

By (2), we need to show that, for μ -almost every $x \in X$, all $g \in G$ and all $i \in \mathbb{Z}$, we have

$$\operatorname{bi}_{gx}(i) = g(\operatorname{bi}_x)(i) \stackrel{(2)}{=} \operatorname{bi}_x(i+k) \cdot g^{-1},$$

where *k* is such that $g = bi_x(k)$.

By (6) and since the actions are free, the elements $g_1 = bi_{gx}(i)$ and $g_2 = bi_x(i+k)$ are (μ -almost surely) the unique members of G for which the respective equalities hold:

(A)
$$T^{i}gx \stackrel{(6) \text{ applied to } gx}{=} g_{1}gx,$$

(B) $T^{i+k}x \stackrel{(6) \text{ applied to } i+k}{=} g_{2}x,$
while the fact that $g = bi_{x}(k)$ means that

$$\theta(gx) = g(\theta(x))$$
, i.e. $bi_{gx} = g(bi_x)$.

By (2), we need to show that, for μ -almost every $x \in X$, all $g \in G$ and all $i \in \mathbb{Z}$, we have

$$\operatorname{bi}_{gx}(i) = g(\operatorname{bi}_x)(i) \stackrel{(2)}{=} \operatorname{bi}_x(i+k) \cdot g^{-1},$$

where *k* is such that $g = bi_x(k)$.

By (6) and since the actions are free, the elements $g_1 = bi_{gx}(i)$ and $g_2 = bi_x(i+k)$ are (μ -almost surely) the unique members of *G* for which the respective equalities hold:

(A)
$$T^{i}gx \stackrel{(6) \text{ applied to } gx}{=} g_{1}gx$$
,
(B) $T^{i+k}x \stackrel{(6) \text{ applied to } i+k}{=} g_{2}x$,
while the fact that $g = bi_{x}(k)$ means that
(C) $gx \stackrel{(6) \text{ applied to } k}{=} T^{k}x$.

- (A) $T^igx = g_1gx$,
- $(\mathsf{B}) \ T^{i+k}x = g_2x,$
- (C) $gx = T^k x$.

4 3 5 4 3 5 5

(A) $T^{i}gx = g_{1}gx$, (B) $T^{i+k}x = g_{2}x$, (C) $gx = T^{k}x$.

Combining (A) and (C) we get

$$g_1gx=T^i(T^kx)$$

E N 4 E N

(A) $T^{i}gx = g_{1}gx$, (B) $T^{i+k}x = g_{2}x$, (C) $gx = T^{k}x$.

Combining (A) and (C) we get

$$g_1gx=T^i(T^kx),$$

which, combined with (B) yields

 $g_1gx = g_2x$.

3

4 3 5 4 3 5 5

(A) $T^{i}gx = g_{1}gx$, (B) $T^{i+k}x = g_{2}x$, (C) $gx = T^{k}x$.

Combining (A) and (C) we get

$$g_1gx=T^i(T^kx),$$

which, combined with (B) yields

$$g_1gx=g_2x.$$

Because the action of *G* is free, for μ -almost every *x* the last equality allows us to conclude that $g_1g = g_2$, i.e. $g_1 = g_2g^{-1}$, i.e.

$$\operatorname{bi}_{gx}(i) = \operatorname{bi}_x(i+k)g^{-1}.$$

イロト イポト イラト イラト

(A) $T^{i}gx = g_{1}gx$, (B) $T^{i+k}x = g_{2}x$, (C) $gx = T^{k}x$.

Combining (A) and (C) we get

$$g_1gx=T^i(T^kx),$$

which, combined with (B) yields

$$g_1gx=g_2x.$$

Because the action of *G* is free, for μ -almost every *x* the last equality allows us to conclude that $g_1g = g_2$, i.e. $g_1 = g_2g^{-1}$, i.e.

$$\mathsf{bi}_{gx}(i) = \mathsf{bi}_x(i+k)g^{-1}$$

This is exactly what we needed to show.

Tomasz Downarowicz (Wrocław)

Notation: Suppose $\varphi : X \to \mathcal{O}$ is a measure-theoretic factor map from a measure-preserving *G*-action (X, μ, G) to a multiorder (\mathcal{O}, ν, G) .

< 口 > < 同 > < 回 > < 回 > < 回 > <

Notation: Suppose $\varphi : X \to \mathcal{O}$ is a measure-theoretic factor map from a measure-preserving *G*-action (X, μ, G) to a multiorder (\mathcal{O}, ν, G) . Given $x \in X$, the associated bijection $bi_x = \varphi(x) \in \mathcal{O}$, and $i \in \mathbb{Z}$, instead of $bi_x(i)$ we will write i^x (the *i*th element of *G* in the order associated to *x*). Note that $i^x \in G$.

A D K A B K A B K A B K B B

Notation: Suppose $\varphi : X \to \mathcal{O}$ is a measure-theoretic factor map from a measure-preserving *G*-action (X, μ, G) to a multiorder (\mathcal{O}, ν, G) . Given $x \in X$, the associated bijection $bi_x = \varphi(x) \in \mathcal{O}$, and $i \in \mathbb{Z}$, instead of $bi_x(i)$ we will write i^x (the *i*th element of *G* in the order associated to *x*). Note that $i^x \in G$.

Theorem 2

Let φ be as above. Then (X, μ, G) is orbit-equivalent to the \mathbb{Z} -action generated by the *successor map* defined as follows:

$$Sx = 1^{x}x.$$

3

Notation: Suppose $\varphi : X \to \mathcal{O}$ is a measure-theoretic factor map from a measure-preserving *G*-action (X, μ, G) to a multiorder (\mathcal{O}, ν, G) . Given $x \in X$, the associated bijection $bi_x = \varphi(x) \in \mathcal{O}$, and $i \in \mathbb{Z}$, instead of $bi_x(i)$ we will write i^x (the *i*th element of *G* in the order associated to *x*). Note that $i^x \in G$.

Theorem 2

Let φ be as above. Then (X, μ, G) is orbit-equivalent to the \mathbb{Z} -action generated by the *successor map* defined as follows:

$$Sx = 1^{x}x.$$

Moreover, for any $k \in \mathbb{Z}$, we have

$$S^k x = k^x x.$$

Notation: Suppose $\varphi : X \to \mathcal{O}$ is a measure-theoretic factor map from a measure-preserving *G*-action (X, μ, G) to a multiorder (\mathcal{O}, ν, G) . Given $x \in X$, the associated bijection $bi_x = \varphi(x) \in \mathcal{O}$, and $i \in \mathbb{Z}$, instead of $bi_x(i)$ we will write i^x (the *i*th element of *G* in the order associated to *x*). Note that $i^x \in G$.

Theorem 2

Let φ be as above. Then (X, μ, G) is orbit-equivalent to the \mathbb{Z} -action generated by the *successor map* defined as follows:

$$Sx = 1^{x}x.$$

Moreover, for any $k \in \mathbb{Z}$, we have

$$S^k x = k^x x.$$

We do not assume the actions (X, μ, G) or (\mathcal{O}, ν, G) to be free.

< 日 > < 同 > < 回 > < 回 > < 回 > <

2

イロト イポト イヨト イヨト

Proof of Theorem 2, (7) $Sx = 1^{x}x$; (8) $S^{k}x = k^{x}x$. *Proof.* Clearly, the map $S : X \to X$ defined by (7) is measurable.

3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof. Clearly, the map $S : X \to X$ defined by (7) is measurable. It suffices to prove (8) for S defined by (7). Indeed, since k^x (with $k \in \mathbb{Z}$) ranges over the entire group G, (8) implies that the orbits $\{S^k x : k \in \mathbb{Z}\}$ and $\{gx : g \in G\}$ are equal.

イロト イポト イラト イラト

Proof. Clearly, the map $S: X \to X$ defined by (7) is measurable. It suffices to prove (8) for S defined by (7). Indeed, since k^x (with $k \in \mathbb{Z}$) ranges over the entire group G, (8) implies that the orbits $\{S^k x : k \in \mathbb{Z}\}$ and $\{qx : q \in G\}$ are equal. We will first show (8) for k > 0, by induction.

イロト イポト イラト イラト

Proof. Clearly, the map $S : X \to X$ defined by (7) is measurable. It suffices to prove (8) for *S* defined by (7). Indeed, since k^x (with $k \in \mathbb{Z}$) ranges over the entire group *G*, (8) implies that the orbits $\{S^k x : k \in \mathbb{Z}\}$ and $\{gx : g \in G\}$ are equal.

We will first show (8) for $k \ge 0$, by induction.

Clearly, (8) is true for k = 0 and, by (7), for k = 1.

イロト イヨト イヨト イヨト

Proof. Clearly, the map $S : X \to X$ defined by (7) is measurable. It suffices to prove (8) for *S* defined by (7). Indeed, since k^x (with $k \in \mathbb{Z}$) ranges over the entire group *G*, (8) implies that the orbits $\{S^k x : k \in \mathbb{Z}\}$ and $\{gx : g \in G\}$ are equal.

We will first show (8) for $k \ge 0$, by induction.

Clearly, (8) is true for k = 0 and, by (7), for k = 1.

Suppose (8) holds for some $k \ge 1$. Then

$$S^{k+1}x = S(S^kx) \stackrel{\text{(8)}}{=} S(k^xx) = S(gx) \stackrel{\text{(7)}}{=} 1^{gx}(gx),$$

where we have let $g = k^{x}$.

Proof. Clearly, the map $S : X \to X$ defined by (7) is measurable. It suffices to prove (8) for *S* defined by (7). Indeed, since k^x (with $k \in \mathbb{Z}$) ranges over the entire group *G*, (8) implies that the orbits $\{S^k x : k \in \mathbb{Z}\}$ and $\{gx : g \in G\}$ are equal.

We will first show (8) for $k \ge 0$, by induction.

Clearly, (8) is true for k = 0 and, by (7), for k = 1.

Suppose (8) holds for some $k \ge 1$. Then

$$\mathcal{S}^{k+1}x = \mathcal{S}(\mathcal{S}^kx) \stackrel{\mathrm{(8)}}{=} \mathcal{S}(k^xx) = \mathcal{S}(gx) \stackrel{\mathrm{(7)}}{=} \mathsf{1}^{gx}(gx),$$

where we have let $g = k^x$. By (2) (applied to i = 1), we have

$$1^{g_X} = bi_{g_X}(1) \stackrel{(2)}{=} bi_x(1+k) \cdot g^{-1} = (k+1)^x \cdot g^{-1}$$

Proof. Clearly, the map $S : X \to X$ defined by (7) is measurable. It suffices to prove (8) for *S* defined by (7). Indeed, since k^x (with $k \in \mathbb{Z}$) ranges over the entire group *G*, (8) implies that the orbits $\{S^k x : k \in \mathbb{Z}\}$ and $\{gx : g \in G\}$ are equal.

We will first show (8) for $k \ge 0$, by induction.

Clearly, (8) is true for k = 0 and, by (7), for k = 1.

Suppose (8) holds for some $k \ge 1$. Then

$$\mathcal{S}^{k+1}x = \mathcal{S}(\mathcal{S}^kx) \stackrel{\mathrm{(8)}}{=} \mathcal{S}(k^xx) = \mathcal{S}(gx) \stackrel{\mathrm{(7)}}{=} \mathsf{1}^{gx}(gx),$$

where we have let $g = k^{x}$. By (2) (applied to i = 1), we have

$$1^{g_X} = \mathsf{bi}_{g_X}(1) \stackrel{(2)}{=} \mathsf{bi}_X(1+k) \cdot g^{-1} = (k+1)^X \cdot g^{-1}$$

Eventually,

$$S^{k+1}(x) = 1^{gx}(gx) = (k+1)^x g^{-1}gx = (k+1)^x(x),$$

and (8) is shown for k + 1.

Proof of Theorem 2, (7) $Sx = 1^{x}x$. Now consider the map $Tx = (-1)^{x}x$.

э

イロト イポト イヨト イヨト
Now consider the map $Tx = (-1)^x x$.

By an inductive argument analogous as that used for S, one can show that (μ -almost surely) for any $k \ge 0$ the following holds:

$$T^k x = (-k)^x x.$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Now consider the map $Tx = (-1)^x x$.

By an inductive argument analogous as that used for S, one can show that (μ -almost surely) for any $k \ge 0$ the following holds:

$$T^k x = (-k)^x x.$$

To complete the proof of (8) for negative integers it remains to show that T is the inverse map of S.

Now consider the map $Tx = (-1)^x x$.

By an inductive argument analogous as that used for *S*, one can show that (μ -almost surely) for any $k \ge 0$ the following holds:

$$T^k x = (-k)^x x.$$

To complete the proof of (8) for negative integers it remains to show that T is the inverse map of S.

Denote x' = Tx. Then we have $x' = (-1)^x x$, i.e.

(9)
$$x = ((-1)^x)^{-1} x'.$$

Now consider the map $Tx = (-1)^x x$.

By an inductive argument analogous as that used for *S*, one can show that (μ -almost surely) for any $k \ge 0$ the following holds:

$$T^k x = (-k)^x x.$$

To complete the proof of (8) for negative integers it remains to show that T is the inverse map of S.

Denote x' = Tx. Then we have $x' = (-1)^x x$, i.e.

(9)
$$x = ((-1)^x)^{-1}x'.$$

Let $g = (-1)^{k}$ (and consequently k = -1). By (2) applied to i = 1,

(10)
$$1^{g_x} = (1+k)^x \cdot g^{-1} = 0^x \cdot g^{-1} = g^{-1}.$$

Now consider the map $Tx = (-1)^x x$.

By an inductive argument analogous as that used for S, one can show that (μ -almost surely) for any $k \ge 0$ the following holds:

$$T^k x = (-k)^x x.$$

To complete the proof of (8) for negative integers it remains to show that T is the inverse map of S.

Denote x' = Tx. Then we have $x' = (-1)^x x$, i.e.

(9)
$$x = ((-1)^x)^{-1}x'.$$

Let $g = (-1)^{k}$ (and consequently k = -1). By (2) applied to i = 1,

(10)
$$1^{g_x} = (1+k)^x \cdot g^{-1} = 0^x \cdot g^{-1} = g^{-1}.$$

Now we can compute

(11)
$$((-1)^{x})^{-1} = g^{-1} \stackrel{(10)}{=} 1^{g_{x}} = 1^{(-1)^{x_{x}}} = 1^{T_{x}} = 1^{x'}.$$

Now consider the map $Tx = (-1)^x x$.

By an inductive argument analogous as that used for S, one can show that (μ -almost surely) for any $k \ge 0$ the following holds:

$$T^k x = (-k)^x x.$$

To complete the proof of (8) for negative integers it remains to show that T is the inverse map of S.

Denote x' = Tx. Then we have $x' = (-1)^x x$, i.e.

(9)
$$x = ((-1)^x)^{-1}x'.$$

Let $g = (-1)^{k}$ (and consequently k = -1). By (2) applied to i = 1,

(10)
$$1^{g_x} = (1+k)^x \cdot g^{-1} = 0^x \cdot g^{-1} = g^{-1}.$$

Now we can compute

(11)
$$((-1)^{x})^{-1} = g^{-1} \stackrel{(10)}{=} 1^{g_{x}} = 1^{(-1)^{x}x} = 1^{T_{x}} = 1^{x'}.$$

Plugging (11) into (9) we obtain $x = 1^{x'} x' \stackrel{(7)}{=} S(x') = STx$.

Proof of Theorem 2

By a symmetric argument we also have x = TSx, which implies, on one hand, that *S* is invertible (with the inverse *T*), and on the other hand, that (8) holds for negative integers. This ends the proof.

E 5 4 E

Proof of Theorem 2

By a symmetric argument we also have x = TSx, which implies, on one hand, that *S* is invertible (with the inverse *T*), and on the other hand, that (8) holds for negative integers. This ends the proof.

Comment. By the theorem of Dye, all ergodic \mathbb{Z} -actions are mutually orbit equivalent. What is special about the action generated by the transformation *S* is that the orbit equivalence with the *G*-action in question is given by the identity map, in particular *S* preserves the same measure μ as the *G*-action, and that it is determined by the multiorder factor of that action.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof of Theorem 2

By a symmetric argument we also have x = TSx, which implies, on one hand, that *S* is invertible (with the inverse *T*), and on the other hand, that (8) holds for negative integers. This ends the proof.

Comment. By the theorem of Dye, all ergodic \mathbb{Z} -actions are mutually orbit equivalent. What is special about the action generated by the transformation *S* is that the orbit equivalence with the *G*-action in question is given by the identity map, in particular *S* preserves the same measure μ as the *G*-action, and that it is determined by the multiorder factor of that action.

That's all for today!

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >