Multiorder vs. orbit equivalence to a \mathbb{Z}-action

Tomasz Downarowicz

Faculty of Pure and Applied Mathematics Wroclaw University of Science and Technology

Poland

based on a joint work with

Piotr Oprocha and Guohua Zhang

based on a joint work with

Piotr Oprocha and Guohua Zhang

some of the ideas presented in this particular section were suggested by Tom Meyerovitch

Multiorder

Multiorder

Let G be an infinite countable group with the unit e.

Multiorder

Let G be an infinite countable group with the unit e. Let \prec be a total order of G and let $g \in G$.

Multiorder

Let G be an infinite countable group with the unit e.
Let \prec be a total order of G and let $g \in G$.
Then we let $g(\prec)$ be the total order on G defined by
(1)

$$
a g(\prec) b \Longleftrightarrow a g \prec b g .
$$

Multiorder

Let G be an infinite countable group with the unit e. Let \prec be a total order of G and let $g \in G$.
Then we let $g(\prec)$ be the total order on G defined by

$$
\begin{equation*}
a g(\prec) b \Longleftrightarrow a g \prec b g . \tag{1}
\end{equation*}
$$

A total order \prec of G is said to be of type \mathbb{Z} if

Multiorder

Let G be an infinite countable group with the unit e.
Let \prec be a total order of G and let $g \in G$.
Then we let $g(\prec)$ be the total order on G defined by

$$
\begin{equation*}
a g(\prec) b \Longleftrightarrow a g \prec b g . \tag{1}
\end{equation*}
$$

A total order \prec of G is said to be of type \mathbb{Z} if
(1) for any $a \prec b$ the order interval $[a, b]^{\prec}=\{a, b\} \cup\{c: a \prec c \prec b\}$ is finite, and

Multiorder

Let G be an infinite countable group with the unit e.
Let \prec be a total order of G and let $g \in G$.
Then we let $g(\prec)$ be the total order on G defined by

$$
\begin{equation*}
a g(\prec) b \Longleftrightarrow a g \prec b g . \tag{1}
\end{equation*}
$$

A total order \prec of G is said to be of type \mathbb{Z} if
(1) for any $a \prec b$ the order interval $[a, b]^{\prec}=\{a, b\} \cup\{c: a \prec c \prec b\}$ is finite, and
(2) there is no minimal or maximal element in G.

Multiorder

Let G be an infinite countable group with the unit e.
Let \prec be a total order of G and let $g \in G$.
Then we let $g(\prec)$ be the total order on G defined by

$$
\begin{equation*}
a g(\prec) b \Longleftrightarrow a g \prec b g . \tag{1}
\end{equation*}
$$

A total order \prec of G is said to be of type \mathbb{Z} if
(1) for any $a \prec b$ the order interval $[a, b]^{\prec}=\{a, b\} \cup\{c: a \prec c \prec b\}$ is finite, and
(2) there is no minimal or maximal element in G.

The action (1) on total orders is Borel measurable (total orders inherit the Borel structure from $\{0,1\}^{G \times G}$, the space of all relations in $\left.G\right)$ and preserves type \mathbb{Z}.

Multiorder

Any total order of G of type \mathbb{Z} can be identified with an anchored bijection bi : $\mathbb{Z} \rightarrow G$ (enumeration of G by the integers). Anchored means that $\mathrm{bi}(0)=e$.

Multiorder

Any total order of G of type \mathbb{Z} can be identified with an anchored bijection bi : $\mathbb{Z} \rightarrow G$ (enumeration of G by the integers). Anchored means that $\mathrm{bi}(0)=e$.
The property "anchored" is necessary for uniqueness.

Multiorder

Any total order of G of type \mathbb{Z} can be identified with an anchored bijection bi : $\mathbb{Z} \rightarrow G$ (enumeration of G by the integers). Anchored means that $\mathrm{bi}(0)=e$.
The property "anchored" is necessary for uniqueness.
Let \mathcal{O} denote the space of all anchored bijections from \mathbb{Z} to G. Then \mathcal{O} inherits a natural Borel structure from $G^{\mathbb{Z}}$ and the correspondence between total orders of type \mathbb{Z} and bijections from \mathbb{Z} to G is a Borel-measurable bijection.

Multiorder

Any total order of G of type \mathbb{Z} can be identified with an anchored bijection bi : $\mathbb{Z} \rightarrow G$ (enumeration of G by the integers). Anchored means that $\mathrm{bi}(0)=e$.
The property "anchored" is necessary for uniqueness.
Let \mathcal{O} denote the space of all anchored bijections from \mathbb{Z} to G. Then \mathcal{O} inherits a natural Borel structure from $G^{\mathbb{Z}}$ and the correspondence between total orders of type \mathbb{Z} and bijections from \mathbb{Z} to G is a Borel-measurable bijection.

The action (1) of \mathcal{G} on total orders of type \mathbb{Z} corresponds to the action on \mathcal{O} defined as follows:

Multiorder

Any total order of G of type \mathbb{Z} can be identified with an anchored bijection bi : $\mathbb{Z} \rightarrow G$ (enumeration of G by the integers). Anchored means that $\mathrm{bi}(0)=e$.
The property "anchored" is necessary for uniqueness.
Let \mathcal{O} denote the space of all anchored bijections from \mathbb{Z} to G. Then \mathcal{O} inherits a natural Borel structure from $G^{\mathbb{Z}}$ and the correspondence between total orders of type \mathbb{Z} and bijections from \mathbb{Z} to G is a Borel-measurable bijection.

The action (1) of \mathcal{G} on total orders of type \mathbb{Z} corresponds to the action on \mathcal{O} defined as follows:
if $g \in G$ and bi $\in \mathcal{O}$ then, for any $i \in \mathbb{Z}$,

Multiorder

Any total order of G of type \mathbb{Z} can be identified with an anchored bijection bi : $\mathbb{Z} \rightarrow G$ (enumeration of G by the integers). Anchored means that $\mathrm{bi}(0)=e$.
The property "anchored" is necessary for uniqueness.
Let \mathcal{O} denote the space of all anchored bijections from \mathbb{Z} to G. Then \mathcal{O} inherits a natural Borel structure from $G^{\mathbb{Z}}$ and the correspondence between total orders of type \mathbb{Z} and bijections from \mathbb{Z} to G is a Borel-measurable bijection.

The action (1) of G on total orders of type \mathbb{Z} corresponds to the action on \mathcal{O} defined as follows:
if $g \in G$ and bi $\in \mathcal{O}$ then, for any $i \in \mathbb{Z}$,
(2) $\quad(g(\mathrm{bi}))(i)=\mathrm{bi}(i+k) \cdot g^{-1}$, where $k \in \mathbb{Z}$ is such that $g=\mathrm{bi}(k)$.

Multiorder

(2) $\quad(g(\mathrm{bi}))(i)=\mathrm{bi}(i+k) \cdot g^{-1}$, where k is such that $g=\mathrm{bi}(k)$.

Multiorder

(2) $\quad(g(\mathrm{bi}))(i)=\mathrm{bi}(i+k) \cdot g^{-1}$, where k is such that $g=\mathrm{bi}(k)$.

Multiorder

(2) $\quad(g(\mathrm{bi}))(i)=\mathrm{bi}(i+k) \cdot g^{-1}$, where k is such that $g=\mathrm{bi}(k)$.

Multiorder

(2) $\quad(g(\mathrm{bi}))(i)=\mathrm{bi}(i+k) \cdot g^{-1}$, where k is such that $g=\mathrm{bi}(k)$.

Multiorder

(2) $\quad(g(\mathrm{bi}))(i)=\mathrm{bi}(i+k) \cdot g^{-1}$, where k is such that $g=\mathrm{bi}(k)$.

Multiorder

(2) $\quad(g(\mathrm{bi}))(i)=\mathrm{bi}(i+k) \cdot g^{-1}$, where k is such that $g=\mathrm{bi}(k)$.

Multiorder

Definition

By a multiorder on G we will understand any measure-preserving system (\mathcal{O}, ν, G), where ν a Borel probability measure on \mathcal{O}, invariant under the action of G given by (2).

Multiorder

Definition

By a multiorder on G we will understand any measure-preserving system (\mathcal{O}, ν, G), where ν a Borel probability measure on \mathcal{O}, invariant under the action of G given by (2).

Multiorder is a particular case of an invariant random order introduced by John Kieffer in 1975. The difference is that IRO involves total orders of any type (typically of type \mathbb{Q}).

Multiorder

Definition

By a multiorder on G we will understand any measure-preserving system (\mathcal{O}, ν, G), where ν a Borel probability measure on \mathcal{O}, invariant under the action of G given by (2).

Multiorder is a particular case of an invariant random order introduced by John Kieffer in 1975. The difference is that IRO involves total orders of any type (typically of type \mathbb{Q}).

Using tilings one can prove that if G is amenable, then there exists a multiorder on G of entropy zero.

Multiorder

Definition

By a multiorder on G we will understand any measure-preserving system (\mathcal{O}, ν, G), where ν a Borel probability measure on \mathcal{O}, invariant under the action of G given by (2).

Multiorder is a particular case of an invariant random order introduced by John Kieffer in 1975. The difference is that IRO involves total orders of any type (typically of type \mathbb{Q}).

Using tilings one can prove that if G is amenable, then there exists a multiorder on G of entropy zero.
(Moreover, that multiorder is uniformly Følner, but we will not use this property.)

Orbit equivalence of actions of different groups

Let (X, μ, G) and (Y, ν, Γ) be two probability measure-preserving actions of two countable groups on two probability spaces.

Orbit equivalence of actions of different groups

Let (X, μ, G) and (Y, ν, Γ) be two probability measure-preserving actions of two countable groups on two probability spaces.
We will say that these actions are orbit-equivalent if there exists a measure-automorphism $\phi: X \rightarrow Y$ of the probability spaces (X, μ) and (Y, ν) which sends orbits to orbits, that is, for any $x \in X$ we have

Orbit equivalence of actions of different groups

Let (X, μ, G) and (Y, ν, Γ) be two probability measure-preserving actions of two countable groups on two probability spaces.
We will say that these actions are orbit-equivalent if there exists a measure-automorphism $\phi: X \rightarrow Y$ of the probability spaces (X, μ) and (Y, ν) which sends orbits to orbits, that is, for any $x \in X$ we have

$$
\phi(\{g x: g \in G\})=\{\gamma(\phi(x)): \gamma \in \Gamma\} .
$$

Orbit equivalence of actions of different groups

Let (X, μ, G) and (Y, ν, Γ) be two probability measure-preserving actions of two countable groups on two probability spaces.
We will say that these actions are orbit-equivalent if there exists a measure-automorphism $\phi: X \rightarrow Y$ of the probability spaces (X, μ) and (Y, ν) which sends orbits to orbits, that is, for any $x \in X$ we have

$$
\phi(\{g x: g \in G\})=\{\gamma(\phi(x)): \gamma \in \Gamma\} .
$$

In this case, for μ-almost every $x \in X$ and every $g \in G$ there exists a $\gamma \in \Gamma$ such that

$$
\begin{equation*}
\phi(g x)=\gamma(\phi(x)), \tag{3}
\end{equation*}
$$

and every $\gamma \in \Gamma$ satisfies (3) for some g.

Orbit equivalence of actions of different groups

Let (X, μ, G) and (Y, ν, Γ) be two probability measure-preserving actions of two countable groups on two probability spaces.
We will say that these actions are orbit-equivalent if there exists a measure-automorphism $\phi: X \rightarrow Y$ of the probability spaces (X, μ) and (Y, ν) which sends orbits to orbits, that is, for any $x \in X$ we have

$$
\phi(\{g x: g \in G\})=\{\gamma(\phi(x)): \gamma \in \Gamma\} .
$$

In this case, for μ-almost every $x \in X$ and every $g \in G$ there exists a $\gamma \in \Gamma$ such that

$$
\begin{equation*}
\phi(g x)=\gamma(\phi(x)), \tag{3}
\end{equation*}
$$

and every $\gamma \in \Gamma$ satisfies (3) for some g.
There is usually no uniqueness: more than one element γ may satisfy (3) for given g, one γ may satisfy (3) for more than one g. Uniqueness holds when both actions are free.

Orbit equivalence of actions of different groups

Because ϕ is invertible, the formula (3) can be written as follows:
(4)

$$
g x=\phi^{-1}(\gamma(\phi(x))) .
$$

Orbit equivalence of actions of different groups

Because ϕ is invertible, the formula (3) can be written as follows:

$$
\begin{equation*}
g x=\phi^{-1}(\gamma(\phi(x))) . \tag{4}
\end{equation*}
$$

Now consider the action of Γ on (X, μ) given by the formula:
(5)

$$
\gamma x=\phi^{-1} \gamma \phi(x) .
$$

Orbit equivalence of actions of different groups

Because ϕ is invertible, the formula (3) can be written as follows:

$$
\begin{equation*}
g x=\phi^{-1}(\gamma(\phi(x))) . \tag{4}
\end{equation*}
$$

Now consider the action of Γ on (X, μ) given by the formula:

$$
\begin{equation*}
\gamma x=\phi^{-1} \gamma \phi(x) \tag{5}
\end{equation*}
$$

Clearly, this new action (X, μ, Γ) is isomorphic to the original action (Y, ν, Γ) (we have $\phi \gamma=\gamma \phi$, so ϕ establishes an isomorphism).

Orbit equivalence of actions of different groups

Because ϕ is invertible, the formula (3) can be written as follows:

$$
\begin{equation*}
g x=\phi^{-1}(\gamma(\phi(x))) \tag{4}
\end{equation*}
$$

Now consider the action of Γ on (X, μ) given by the formula:

$$
\begin{equation*}
\gamma x=\phi^{-1} \gamma \phi(x) \tag{5}
\end{equation*}
$$

Clearly, this new action (X, μ, Γ) is isomorphic to the original action (Y, ν, Γ) (we have $\phi \gamma=\gamma \phi$, so ϕ establishes an isomorphism).

By (4), we have $g x=\gamma x$, (or $\operatorname{id}(g x)=\gamma(\operatorname{id}(x))$), the action (X, μ, Γ) of Γ on (X, μ) defined by (5) is orbit equivalent to the original action (X, μ, G) (with identity playing the role of the conjugating map).

Orbit equivalence of actions of different groups

We have reduced the notion of orbit equivalence to actions of different groups on the same probability space, and such that the conjugating map is the identity.

Orbit equivalence of actions of different groups

We have reduced the notion of orbit equivalence to actions of different groups on the same probability space, and such that the conjugating map is the identity.
In this context we can redefine orbit equivalence:

Orbit equivalence of actions of different groups

We have reduced the notion of orbit equivalence to actions of different groups on the same probability space, and such that the conjugating map is the identity.
In this context we can redefine orbit equivalence:

- Two actions (X, μ, G) and (X, μ, Γ) are orbit equivalent if they have the same orbits:

$$
\{g x: g \in G\}=\{\gamma x: \gamma \in \Gamma\}
$$

Orbit equivalence of actions of different groups

We have reduced the notion of orbit equivalence to actions of different groups on the same probability space, and such that the conjugating map is the identity.
In this context we can redefine orbit equivalence:

- Two actions (X, μ, G) and (X, μ, Γ) are orbit equivalent if they have the same orbits:

$$
\{g x: g \in G\}=\{\gamma x: \gamma \in \Gamma\}
$$

If, in addition, both actions are free, then for μ-almost every x the correspondence between $g \in G$ and $\gamma \in \Gamma$ given by $g x=\gamma x$ establishes a bijection $\mathrm{bi}_{x}: \Gamma \rightarrow G$ (the direction is reversed on purpose).

Orbit equivalence of actions of different groups

We have reduced the notion of orbit equivalence to actions of different groups on the same probability space, and such that the conjugating map is the identity.
In this context we can redefine orbit equivalence:

- Two actions (X, μ, G) and (X, μ, Γ) are orbit equivalent if they have the same orbits:

$$
\{g x: g \in G\}=\{\gamma x: \gamma \in \Gamma\}
$$

If, in addition, both actions are free, then for μ-almost every x the correspondence between $g \in G$ and $\gamma \in \Gamma$ given by $g x=\gamma x$ establishes a bijection $\mathrm{bi}_{x}: \Gamma \rightarrow G$ (the direction is reversed on purpose).
Observe that the above bijection is always anchored because $e x=x=e_{\Gamma} x$.

Multiorder versus orbit equivalence to a \mathbb{Z}-action

We remark that a \mathbb{Z}-action is free if and only if almost every orbit is infinite. Any free G-action also has infinite orbits.

Multiorder versus orbit equivalence to a \mathbb{Z}-action

We remark that a \mathbb{Z}-action is free if and only if almost every orbit is infinite. Any free G-action also has infinite orbits. Thus any \mathbb{Z}-action orbit equivalent to a free action of G is itself free and then the orbit equivalence establishes, for μ-almost every $x \in X$ an anchored bijection bi $_{x}: \mathbb{Z} \rightarrow G$.

Multiorder versus orbit equivalence to a \mathbb{Z}-action

We remark that a \mathbb{Z}-action is free if and only if almost every orbit is infinite. Any free G-action also has infinite orbits. Thus any \mathbb{Z}-action orbit equivalent to a free action of G is itself free and then the orbit equivalence establishes, for μ-almost every $x \in X$ an anchored bijection bi bi $_{x}: \mathbb{Z} \rightarrow G$.
Theorem 1
Let (X, μ, G) be a free action on a probability space. Let (X, μ, \mathbb{Z}) be a \mathbb{Z}-action orbit equivalent (via the identity map) to (X, μ, G). Let $T=T_{1}$ be the generating map of this \mathbb{Z}-action.

Multiorder versus orbit equivalence to a \mathbb{Z}-action

We remark that a \mathbb{Z}-action is free if and only if almost every orbit is infinite. Any free G-action also has infinite orbits. Thus any \mathbb{Z}-action orbit equivalent to a free action of G is itself free and then the orbit equivalence establishes, for μ-almost every $x \in X$ an anchored bijection bi bi $_{x}: \mathbb{Z} \rightarrow G$.

Theorem 1

Let (X, μ, G) be a free action on a probability space. Let (X, μ, \mathbb{Z}) be a \mathbb{Z}-action orbit equivalent (via the identity map) to (X, μ, G). Let $T=T_{1}$ be the generating map of this \mathbb{Z}-action. Then the map $\theta: X \rightarrow \mathcal{O}$ given by $\theta(x)=\mathrm{bi}_{x}$, where $\mathrm{bi}_{x}: \mathbb{Z} \rightarrow G$ is a bijection defined by the relation

$$
\begin{equation*}
\operatorname{bi}_{x}(i)=g \Longleftrightarrow T^{i} x=g x \tag{6}
\end{equation*}
$$

is a measure-theoretic factor map from (X, μ, G) to a multiorder (\mathcal{O}, ν, G), where $\nu=\theta(\mu)$, and the action of G on \mathcal{O} is given by (2).

Multiorder versus orbit equivalence to a \mathbb{Z}-action

We remark that a \mathbb{Z}-action is free if and only if almost every orbit is infinite. Any free G-action also has infinite orbits. Thus any \mathbb{Z}-action orbit equivalent to a free action of G is itself free and then the orbit equivalence establishes, for μ-almost every $x \in X$ an anchored bijection bi bi $_{x}: \mathbb{Z} \rightarrow G$.

Theorem 1

Let (X, μ, G) be a free action on a probability space. Let (X, μ, \mathbb{Z}) be a \mathbb{Z}-action orbit equivalent (via the identity map) to (X, μ, G). Let $T=T_{1}$ be the generating map of this \mathbb{Z}-action. Then the map $\theta: X \rightarrow \mathcal{O}$ given by $\theta(x)=\mathrm{bi}_{x}$, where $\mathrm{bi}_{x}: \mathbb{Z} \rightarrow G$ is a bijection defined by the relation

$$
\begin{equation*}
\operatorname{bi}_{x}(i)=g \Longleftrightarrow T^{i} x=g x \tag{6}
\end{equation*}
$$

is a measure-theoretic factor map from (X, μ, G) to a multiorder (\mathcal{O}, ν, G), where $\nu=\theta(\mu)$, and the action of G on \mathcal{O} is given by (2).

Corollary. Since every action of an amenable group is orbit-equivalent to a \mathbb{Z}-action, every free action of an amenable group has a multiorder as a factor.

Multiorder vs. orbit equivalence, (6) $\mathrm{bi}_{x}(i)=g \Longleftrightarrow T^{i} x=g x$ Proof of Theorem 1. The only thing requiring a proof is the equivariance of the map θ, i.e. we need to show that, for μ-almost all $x \in X$ and all $g \in G$, we have

$$
\theta(g x)=g(\theta(x)), \text { i.e. } \mathrm{bi}_{g x}=g\left(\mathrm{bi}_{x}\right)
$$

Multiorder vs. orbit equivalence, (6) $\mathrm{bi}_{x}(i)=g \Longleftrightarrow T^{i} x=g x$ Proof of Theorem 1. The only thing requiring a proof is the equivariance of the map θ, i.e. we need to show that, for μ-almost all $x \in X$ and all $g \in G$, we have

$$
\theta(g x)=g(\theta(x)), \text { i.e. } \mathrm{bi}_{g x}=g\left(\mathrm{bi}_{x}\right)
$$

By (2), we need to show that, for μ-almost every $x \in X$, all $g \in G$ and all $i \in \mathbb{Z}$, we have

$$
\mathrm{bi}_{g x}(i)=g\left(\mathrm{bi}_{x}\right)(i) \stackrel{(2)}{=} \mathrm{bi}_{x}(i+k) \cdot g^{-1}
$$

where k is such that $g=\mathrm{bi}_{x}(k)$.

Multiorder vs. orbit equivalence, (6) $\mathrm{bi}_{x}(i)=g \Longleftrightarrow T^{i} x=g x$

 Proof of Theorem 1. The only thing requiring a proof is the equivariance of the map θ, i.e. we need to show that, for μ-almost all $x \in X$ and all $g \in G$, we have$$
\theta(g x)=g(\theta(x)), \text { i.e. } \mathrm{bi}_{g x}=g\left(\mathrm{bi}_{x}\right)
$$

By (2), we need to show that, for μ-almost every $x \in X$, all $g \in G$ and all $i \in \mathbb{Z}$, we have

$$
\mathrm{bi}_{g x}(i)=g\left(\mathrm{bi}_{x}\right)(i) \stackrel{(2)}{=} \mathrm{bi}_{x}(i+k) \cdot g^{-1}
$$

where k is such that $g=\mathrm{bi}_{x}(k)$.
By (6) and since the actions are free, the elements $g_{1}=\mathrm{bi}_{g x}(i)$ and $g_{2}=\mathrm{bi}_{x}(i+k)$ are $(\mu$-almost surely) the unique members of G for which the respective equalities hold:

Multiorder vs. orbit equivalence, (6) $b_{x}(i)=g \Longleftrightarrow T^{i} x=g x$

 Proof of Theorem 1. The only thing requiring a proof is the equivariance of the map θ, i.e. we need to show that, for μ-almost all $x \in X$ and all $g \in G$, we have$$
\theta(g x)=g(\theta(x)), \text { i.e. } \mathrm{bi}_{g x}=g\left(\mathrm{bi}_{x}\right)
$$

By (2), we need to show that, for μ-almost every $x \in X$, all $g \in G$ and all $i \in \mathbb{Z}$, we have

$$
\mathrm{bi}_{g x}(i)=g\left(\mathrm{bi}_{x}\right)(i) \stackrel{(2)}{=} \mathrm{bi}_{x}(i+k) \cdot g^{-1}
$$

where k is such that $g=\mathrm{bi}_{x}(k)$.
By (6) and since the actions are free, the elements $g_{1}=\mathrm{bi}_{g x}(i)$ and $g_{2}=\mathrm{bi}_{x}(i+k)$ are $(\mu$-almost surely) the unique members of G for which the respective equalities hold:
(A) $T^{i} g x \stackrel{(6) \text { applied to } g x}{=} g_{1} g x$,

Multiorder vs. orbit equivalence, (6) $b_{x}(i)=g \Longleftrightarrow T^{i} x=g x$

 Proof of Theorem 1. The only thing requiring a proof is the equivariance of the map θ, i.e. we need to show that, for μ-almost all $x \in X$ and all $g \in G$, we have$$
\theta(g x)=g(\theta(x)), \text { i.e. } \mathrm{bi}_{g x}=g\left(\mathrm{bi}_{x}\right)
$$

By (2), we need to show that, for μ-almost every $x \in X$, all $g \in G$ and all $i \in \mathbb{Z}$, we have

$$
\mathrm{bi}_{g x}(i)=g\left(\mathrm{bi}_{x}\right)(i) \stackrel{(2)}{=} \mathrm{bi}_{x}(i+k) \cdot g^{-1}
$$

where k is such that $g=\mathrm{bi}_{x}(k)$.
By (6) and since the actions are free, the elements $g_{1}=\mathrm{bi}_{g x}(i)$ and $g_{2}=\mathrm{bi}_{x}(i+k)$ are $(\mu$-almost surely) the unique members of G for which the respective equalities hold:
(A) $T^{i} g x$
(6) applied to $g x$ $g_{1} g x$,
(B) $T^{i+k} x \stackrel{(6)}{\stackrel{\text { applied to }}{=} i+k} g_{2} x$,

Multiorder vs. orbit equivalence, (6) $\mathrm{bi}_{x}(i)=g \Longleftrightarrow T^{i} x=g x$

 Proof of Theorem 1. The only thing requiring a proof is the equivariance of the map θ, i.e. we need to show that, for μ-almost all $x \in X$ and all $g \in G$, we have$$
\theta(g x)=g(\theta(x)), \text { i.e. } \mathrm{bi}_{g x}=g\left(\mathrm{bi}_{x}\right)
$$

By (2), we need to show that, for μ-almost every $x \in X$, all $g \in G$ and all $i \in \mathbb{Z}$, we have

$$
\mathrm{bi}_{g x}(i)=g\left(\mathrm{bi}_{x}\right)(i) \stackrel{(2)}{=} \mathrm{bi}_{x}(i+k) \cdot g^{-1}
$$

where k is such that $g=\mathrm{bi}_{x}(k)$.
By (6) and since the actions are free, the elements $g_{1}=\mathrm{bi}_{g x}(i)$ and $g_{2}=\mathrm{bi}_{x}(i+k)$ are $(\mu$-almost surely) the unique members of G for which the respective equalities hold:
(A) $T^{i} g x \stackrel{(6)}{(a p p l i e d ~ t o ~} g x g_{1} g x$,
(B) $T^{i+k} x^{(6)} \stackrel{\text { applied to } i+k}{=} g_{2} x$,
while the fact that $g=\mathrm{bi}_{x}(k)$ means that

Multiorder vs. orbit equivalence, (6) $b_{x}(i)=g \Longleftrightarrow T^{i} x=g x$

 Proof of Theorem 1 . The only thing requiring a proof is the equivariance of the map θ, i.e. we need to show that, for μ-almost all $x \in X$ and all $g \in G$, we have$$
\theta(g x)=g(\theta(x)), \text { i.e. } \mathrm{bi}_{g x}=g\left(\mathrm{bi}_{x}\right)
$$

By (2), we need to show that, for μ-almost every $x \in X$, all $g \in G$ and all $i \in \mathbb{Z}$, we have

$$
\mathrm{bi}_{g x}(i)=g\left(\mathrm{bi}_{x}\right)(i) \stackrel{(2)}{=} \mathrm{bi}_{x}(i+k) \cdot g^{-1}
$$

where k is such that $g=\mathrm{bi}_{x}(k)$.
By (6) and since the actions are free, the elements $g_{1}=\mathrm{bi}_{g x}(i)$ and $g_{2}=\mathrm{bi}_{x}(i+k)$ are $(\mu$-almost surely) the unique members of G for which the respective equalities hold:
(A) $T^{i} g x \stackrel{(6)}{(a p p l i e d ~ t o ~} g x g_{1} g x$,
(B) $T^{i+k} x^{(6)} \stackrel{\text { applied to } i+k}{=} g_{2} x$,
while the fact that $g=\mathrm{bi}_{x}(k)$ means that
(C) $g x \stackrel{(6)}{(\text { applied to } k}=T^{k} x$.

Multiorder versus orbit equivalence to a \mathbb{Z}-action

(A) $T^{i} g x=g_{1} g x$,
(B) $T^{i+k} x=g_{2} x$,
(C) $g x=T^{k} x$.

Multiorder versus orbit equivalence to a \mathbb{Z}-action

(A) $T^{i} g x=g_{1} g x$,
(B) $T^{i+k} x=g_{2} x$,
(C) $g x=T^{k} x$.

Combining (A) and (C) we get

$$
g_{1} g x=T^{i}\left(T^{k} x\right)
$$

Multiorder versus orbit equivalence to a \mathbb{Z}-action

(A) $T^{i} g x=g_{1} g x$,
(B) $T^{i+k} x=g_{2} x$,
(C) $g x=T^{k} x$.

Combining (A) and (C) we get

$$
g_{1} g x=T^{i}\left(T^{k} x\right)
$$

which, combined with (B) yields

$$
g_{1} g x=g_{2} x
$$

Multiorder versus orbit equivalence to a \mathbb{Z}-action

(A) $T^{i} g x=g_{1} g x$,
(B) $T^{i+k} x=g_{2} x$,
(C) $g x=T^{k} x$.

Combining (A) and (C) we get

$$
g_{1} g x=T^{i}\left(T^{k} x\right)
$$

which, combined with (B) yields

$$
g_{1} g x=g_{2} x
$$

Because the action of G is free, for μ-almost every x the last equality allows us to conclude that $g_{1} g=g_{2}$, i.e. $g_{1}=g_{2} g^{-1}$, i.e.

$$
\mathrm{bi}_{g x}(i)=\mathrm{bi}_{x}(i+k) g^{-1}
$$

Multiorder versus orbit equivalence to a \mathbb{Z}-action

(A) $T^{i} g x=g_{1} g x$,
(B) $T^{i+k} x=g_{2} x$,
(C) $g x=T^{k} x$.

Combining (A) and (C) we get

$$
g_{1} g x=T^{i}\left(T^{k} x\right)
$$

which, combined with (B) yields

$$
g_{1} g x=g_{2} x
$$

Because the action of G is free, for μ-almost every x the last equality allows us to conclude that $g_{1} g=g_{2}$, i.e. $g_{1}=g_{2} g^{-1}$, i.e.

$$
\mathrm{bi}_{g x}(i)=\mathrm{bi}_{x}(i+k) g^{-1}
$$

This is exactly what we needed to show.

Multiorder versus orbit equivalence to a \mathbb{Z}-action

Notation: Suppose $\varphi: X \rightarrow \mathcal{O}$ is a measure-theoretic factor map from a measure-preserving G-action (X, μ, G) to a multiorder (\mathcal{O}, ν, G).

Multiorder versus orbit equivalence to a \mathbb{Z}-action

Notation: Suppose $\varphi: X \rightarrow \mathcal{O}$ is a measure-theoretic factor map from a measure-preserving G-action (X, μ, G) to a multiorder (\mathcal{O}, ν, G).
Given $x \in X$, the associated bijection $\mathrm{bi}_{x}=\varphi(x) \in \mathcal{O}$, and $i \in \mathbb{Z}$, instead of bi $_{x}(i)$ we will write i^{x} (the i th element of G in the order associated to x). Note that $i^{x} \in G$.

Multiorder versus orbit equivalence to a \mathbb{Z}-action

Notation: Suppose $\varphi: X \rightarrow \mathcal{O}$ is a measure-theoretic factor map from a measure-preserving G-action (X, μ, G) to a multiorder (\mathcal{O}, ν, G).
Given $x \in X$, the associated bijection $\mathrm{bi}_{x}=\varphi(x) \in \mathcal{O}$, and $i \in \mathbb{Z}$, instead of $\mathrm{bi}_{x}(i)$ we will write i^{x} (the i th element of G in the order associated to x). Note that $i^{x} \in G$.

Theorem 2
Let φ be as above. Then (X, μ, G) is orbit-equivalent to the \mathbb{Z}-action generated by the successor map defined as follows:

$$
\begin{equation*}
S x=1^{x} x \tag{7}
\end{equation*}
$$

Multiorder versus orbit equivalence to a \mathbb{Z}-action

Notation: Suppose $\varphi: X \rightarrow \mathcal{O}$ is a measure-theoretic factor map from a measure-preserving G-action (X, μ, G) to a multiorder (\mathcal{O}, ν, G).
Given $x \in X$, the associated bijection $\mathrm{bi}_{x}=\varphi(x) \in \mathcal{O}$, and $i \in \mathbb{Z}$, instead of $\mathrm{bi}_{x}(i)$ we will write i^{x} (the i th element of G in the order associated to x). Note that $i^{x} \in G$.
Theorem 2
Let φ be as above. Then (X, μ, G) is orbit-equivalent to the \mathbb{Z}-action generated by the successor map defined as follows:

$$
\begin{equation*}
S x=1^{x} x \tag{7}
\end{equation*}
$$

Moreover, for any $k \in \mathbb{Z}$, we have

$$
\begin{equation*}
S^{k} x=k^{x} x \tag{8}
\end{equation*}
$$

Multiorder versus orbit equivalence to a \mathbb{Z}-action

Notation: Suppose $\varphi: X \rightarrow \mathcal{O}$ is a measure-theoretic factor map from a measure-preserving G-action (X, μ, G) to a multiorder (\mathcal{O}, ν, G).
Given $x \in X$, the associated bijection $\mathrm{bi}_{x}=\varphi(x) \in \mathcal{O}$, and $i \in \mathbb{Z}$, instead of $\mathrm{bi}_{x}(i)$ we will write i^{x} (the i th element of G in the order associated to x). Note that $i^{x} \in G$.

Theorem 2
Let φ be as above. Then (X, μ, G) is orbit-equivalent to the \mathbb{Z}-action generated by the successor map defined as follows:

$$
\begin{equation*}
S x=1^{x} x \tag{7}
\end{equation*}
$$

Moreover, for any $k \in \mathbb{Z}$, we have

$$
\begin{equation*}
S^{k} x=k^{x} x \tag{8}
\end{equation*}
$$

We do not assume the actions (X, μ, G) or (\mathcal{O}, ν, G) to be free.

Proof of Theorem 2, (7) $S x=1^{x} x$; (8) $S^{\star} x=k^{x} x$.

Proof of Theorem 2, (7) $S x=1^{x} x$; (8) $S^{k} x=k^{x} x$. Proof. Clearly, the map $S: X \rightarrow X$ defined by (7) is measurable.

Proof of Theorem 2, (7) $S_{x}=1^{x} x ;$ ((8) $S^{k} x=k^{\star} x$.

 Proof. Clearly, the map $S: X \rightarrow X$ defined by (7) is measurable. It suffices to prove (8) for S defined by (7). Indeed, since k^{x} (with $k \in \mathbb{Z}$) ranges over the entire group G, (8) implies that the orbits $\left\{S^{k} x: k \in \mathbb{Z}\right\}$ and $\{g x: g \in G\}$ are equal.
Proof of Theorem 2, (7) $S_{x}=1^{x} x ;$ ((8) $S^{k} x=k^{\star} x$.

 Proof. Clearly, the map $S: X \rightarrow X$ defined by (7) is measurable. It suffices to prove (8) for S defined by (7). Indeed, since k^{x} (with $k \in \mathbb{Z}$) ranges over the entire group G, (8) implies that the orbits $\left\{S^{k} x: k \in \mathbb{Z}\right\}$ and $\{g x: g \in G\}$ are equal. We will first show (8) for $k \geq 0$, by induction.
Proof of Theorem 2, (7) $S_{x}=1^{x} x ;$ ((8) $S^{k} x=k^{\star} x$.

 Proof. Clearly, the map $S: X \rightarrow X$ defined by (7) is measurable. It suffices to prove (8) for S defined by (7). Indeed, since k^{x} (with $k \in \mathbb{Z}$) ranges over the entire group G, (8) implies that the orbits $\left\{S^{k} x: k \in \mathbb{Z}\right\}$ and $\{g x: g \in G\}$ are equal.We will first show (8) for $k \geq 0$, by induction.
Clearly, (8) is true for $k=0$ and, by (7), for $k=1$.

Proof of Theorem 2, (7) $S x=1^{x} x$; (8) $S^{\star} x=k^{x} x$.

 Proof. Clearly, the map $S: X \rightarrow X$ defined by (7) is measurable. It suffices to prove (8) for S defined by (7). Indeed, since k^{x} (with $k \in \mathbb{Z}$) ranges over the entire group G, (8) implies that the orbits $\left\{S^{k} x: k \in \mathbb{Z}\right\}$ and $\{g x: g \in G\}$ are equal.We will first show (8) for $k \geq 0$, by induction.
Clearly, (8) is true for $k=0$ and, by (7), for $k=1$.
Suppose (8) holds for some $k \geq 1$. Then

$$
S^{k+1} x=S\left(S^{k} x\right) \stackrel{(8)}{=} S\left(k^{x} x\right)=S(g x) \stackrel{(7)}{=} 1^{g x}(g x),
$$

where we have let $g=k^{x}$.

Proof of Theorem 2, (7) $S x=1^{x} x$; (8) $S^{k} x=k^{x} x$.

 Proof. Clearly, the map $S: X \rightarrow X$ defined by (7) is measurable. It suffices to prove (8) for S defined by (7). Indeed, since k^{x} (with $k \in \mathbb{Z}$) ranges over the entire group G, (8) implies that the orbits $\left\{S^{k} x: k \in \mathbb{Z}\right\}$ and $\{g x: g \in G\}$ are equal.We will first show (8) for $k \geq 0$, by induction.
Clearly, (8) is true for $k=0$ and, by (7), for $k=1$.
Suppose (8) holds for some $k \geq 1$. Then

$$
S^{k+1} x=S\left(S^{k} x\right) \stackrel{(8)}{=} S\left(k^{x} x\right)=S(g x) \stackrel{(7)}{=} 1^{g x}(g x)
$$

where we have let $g=k^{x}$. By (2) (applied to $i=1$), we have

$$
1^{g x}=\mathrm{bi}_{g x}(1) \stackrel{(2)}{=} \mathrm{bi}_{x}(1+k) \cdot g^{-1}=(k+1)^{x} \cdot g^{-1} .
$$

Proof of Theorem 2, (7) $S x=1^{x} x$; (8) $S^{k} x=k^{x} x$.

 Proof. Clearly, the map $S: X \rightarrow X$ defined by (7) is measurable. It suffices to prove (8) for S defined by (7). Indeed, since k^{x} (with $k \in \mathbb{Z}$) ranges over the entire group G, (8) implies that the orbits $\left\{S^{k} x: k \in \mathbb{Z}\right\}$ and $\{g x: g \in G\}$ are equal.We will first show (8) for $k \geq 0$, by induction.
Clearly, (8) is true for $k=0$ and, by (7), for $k=1$.
Suppose (8) holds for some $k \geq 1$. Then

$$
S^{k+1} x=S\left(S^{k} x\right) \stackrel{(8)}{=} S\left(k^{x} x\right)=S(g x) \stackrel{(7)}{=} 1^{g x}(g x)
$$

where we have let $g=k^{x}$. By (2) (applied to $i=1$), we have

$$
1^{g x}=\mathrm{bi}_{g x}(1) \stackrel{(2)}{=} \mathrm{bi}_{x}(1+k) \cdot g^{-1}=(k+1)^{x} \cdot g^{-1} .
$$

Eventually,

$$
S^{k+1}(x)=1^{g x}(g x)=(k+1)^{x} g^{-1} g x=(k+1)^{x}(x)
$$

and (8) is shown for $k+1$.

Proof of Theorem 2, (7) $S_{x}=1^{x} x$.

Now consider the map $T x=(-1)^{x} x$.

Proof of Theorem 2, (7) $S_{x}=1^{1 x} x$.

Now consider the map $T x=(-1)^{x} x$.
By an inductive argument analogous as that used for S, one can show that (μ-almost surely) for any $k \geq 0$ the following holds:

$$
T^{k} x=(-k)^{x} x
$$

Proof of Theorem 2, (7) $S_{x}=1^{1 x} x$.

Now consider the map $T x=(-1)^{x} x$.
By an inductive argument analogous as that used for S, one can show that (μ-almost surely) for any $k \geq 0$ the following holds:

$$
T^{k} x=(-k)^{x} x
$$

To complete the proof of (8) for negative integers it remains to show that T is the inverse map of S.

Proof of Theorem 2, (7) $S_{x}=1^{1 x} x$.

Now consider the map $T x=(-1)^{x} x$.
By an inductive argument analogous as that used for S, one can show that (μ-almost surely) for any $k \geq 0$ the following holds:

$$
T^{k} x=(-k)^{x} x
$$

To complete the proof of (8) for negative integers it remains to show that T is the inverse map of S.
Denote $x^{\prime}=T x$. Then we have $x^{\prime}=(-1)^{x} x$, i.e.

$$
\begin{equation*}
x=\left((-1)^{x}\right)^{-1} x^{\prime} \tag{9}
\end{equation*}
$$

Proof of Theorem 2, (7) $S x=1^{x} x$.

Now consider the map $T x=(-1)^{x} x$.
By an inductive argument analogous as that used for S, one can show that (μ-almost surely) for any $k \geq 0$ the following holds:

$$
T^{k} x=(-k)^{x} x
$$

To complete the proof of (8) for negative integers it remains to show that T is the inverse map of S.
Denote $x^{\prime}=T x$. Then we have $x^{\prime}=(-1)^{x} x$, i.e.

$$
\begin{equation*}
x=\left((-1)^{x}\right)^{-1} x^{\prime} \tag{9}
\end{equation*}
$$

Let $g=(-1)^{x}$ (and consequently $k=-1$). By (2) applied to $i=1$,
(10)

$$
1^{g x}=(1+k)^{x} \cdot g^{-1}=0^{x} \cdot g^{-1}=g^{-1}
$$

Proof of Theorem 2, (7) $S_{x}=1^{1 x} x$.

Now consider the map $T x=(-1)^{x} x$.
By an inductive argument analogous as that used for S, one can show that (μ-almost surely) for any $k \geq 0$ the following holds:

$$
T^{k} x=(-k)^{x} x
$$

To complete the proof of (8) for negative integers it remains to show that T is the inverse map of S.
Denote $x^{\prime}=T x$. Then we have $x^{\prime}=(-1)^{x} x$, i.e.

$$
\begin{equation*}
x=\left((-1)^{x}\right)^{-1} x^{\prime} \tag{9}
\end{equation*}
$$

Let $g=(-1)^{x}$ (and consequently $k=-1$). By (2) applied to $i=1$,
(10)

$$
1^{g x}=(1+k)^{x} \cdot g^{-1}=0^{x} \cdot g^{-1}=g^{-1}
$$

Now we can compute

$$
\begin{equation*}
\left((-1)^{x}\right)^{-1}=g^{-1} \stackrel{(10)}{=} 1^{g x}=1^{(-1)^{x} x}=1^{T x}=1^{x^{\prime}} \tag{11}
\end{equation*}
$$

Proof of Theorem 2, (7) $S_{x}=1^{1 x} x$.

Now consider the map $T x=(-1)^{x} x$.
By an inductive argument analogous as that used for S, one can show that (μ-almost surely) for any $k \geq 0$ the following holds:

$$
T^{k} x=(-k)^{x} x
$$

To complete the proof of (8) for negative integers it remains to show that T is the inverse map of S.
Denote $x^{\prime}=T x$. Then we have $x^{\prime}=(-1)^{x} x$, i.e.

$$
\begin{equation*}
x=\left((-1)^{x}\right)^{-1} x^{\prime} \tag{9}
\end{equation*}
$$

Let $g=(-1)^{x}$ (and consequently $k=-1$). By (2) applied to $i=1$,
(10)

$$
1^{g x}=(1+k)^{x} \cdot g^{-1}=0^{x} \cdot g^{-1}=g^{-1}
$$

Now we can compute

$$
\begin{equation*}
\left((-1)^{x}\right)^{-1}=g^{-1} \stackrel{(10)}{=} 1^{g x}=1^{(-1)^{x} x}=1^{T x}=1^{x^{\prime}} \tag{11}
\end{equation*}
$$

Plugging (11) into (9) we obtain $x=1^{x^{\prime}} x^{\prime} \stackrel{(7)}{=} S\left(x^{\prime}\right)=S T x$.

Proof of Theorem 2

By a symmetric argument we also have $x=T S x$, which implies, on one hand, that S is invertible (with the inverse T), and on the other hand, that (8) holds for negative integers. This ends the proof.

Proof of Theorem 2

By a symmetric argument we also have $x=T S x$, which implies, on one hand, that S is invertible (with the inverse T), and on the other hand, that (8) holds for negative integers. This ends the proof.

Comment. By the theorem of Dye, all ergodic \mathbb{Z}-actions are mutually orbit equivalent. What is special about the action generated by the transformation S is that the orbit equivalence with the G-action in question is given by the identity map, in particular S preserves the same measure μ as the G-action, and that it is determined by the multiorder factor of that action.

Proof of Theorem 2

By a symmetric argument we also have $x=T S x$, which implies, on one hand, that S is invertible (with the inverse T), and on the other hand, that (8) holds for negative integers. This ends the proof.

Comment. By the theorem of Dye, all ergodic \mathbb{Z}-actions are mutually orbit equivalent. What is special about the action generated by the transformation S is that the orbit equivalence with the G-action in question is given by the identity map, in particular S preserves the same measure μ as the G-action, and that it is determined by the multiorder factor of that action.

That's all for today!

